
NASP−9288−A5f11

Multiple Virtual Storage (MVS)

IBM JOVIAL Language

User’s Manual

Model A5f1.1

PAGE CONTROL CHART

The following pages contain technical and/or editorial changes for the A5f1.1 update, dated 25 August
2000. Pages that have not changed for this update will maintain their previous levels and dates.

Pages:

Cover
i
iii

NASP−9288−A5f11

NATIONAL AIRSPACE SYSTEM

En Route

MULTIPLE VIRTUAL STORAGE (MVS)

IBM JOVIAL Language

User’s Manual

Model A5f1.1

25 August 2000

This manual (JOVIAL) contains information to help programmers write JOVIAL language
programs.

Operational Support
National En Route Automation Division, AOS−300

Federal Aviation Administration
William J. Hughes Technical Center

Atlantic City International Airport, New Jersey 08405

iNASP−9288−A5f11

CHANGE HISTORY

Level Date Case File or PTR No. Change/Comment

02H 07 May 1986 A4e0.0 HCS Update.

02H 14 October 1986 A4e0.0 HCS Update.

02H 15 August 1995 Reissued for conformity of standards
and format, and CD−ROM delivery.

A5f11 25 August 2000 A5f1.1 publication. HOCSR phase 2
enhancements.

iiiNASP−9288−A5f1125 August 2000

PREFACE

This manual contains the information needed to write JOVIAL language programs. It is intended primarily
as a reference document, for use by programmers with some familiarity with the JOVIAL language. It
may be used as a source document to teach JOVIAL; however, the organization of the manual is not intended
to provide a course outline for such a class, nor is it designed as a self-instruction guide. This manual
is intended for programmers who have experience using at least one compiler programming language,
such as PL/1 or FORTRAN.

Following a general introduction to the JOVIAL language, the statement formats and rules for writing
data descriptions and operative statements are presented. Appendixes contain additional reference material,
including a list of language formats.

Use of the JOVIAL direct code facility permits parts of programs to be coded in assembly language. Familiarity
with the Data Processing System: Basic Assembly Language User’s Manual (BALASM) is necessary for
using direct code.

NOTATION USED IN THIS PUBLICATION

The following notation is used in the language statement formats throughout this publication:

1. Upper-case words and letters must appear exactly as given in the format.

2. Lower-case words and letters represent material to be supplied by the programmer. Usually the
type of material is indicated. For example, if the word �item-name" appeared in a format, the
programmer would supply the name of an item.

3. Braces {�} indicate a choice. One and only one of the items enclosed in braces is to be used.

4. Brackets [�] indicate optional material. The programmer decides whether the item enclosed in
brackets is to be used or omitted. If both braces and brackets could be used; i.e., a choice is
to be made of optional material, the braces are omitted from the format. The items from which
a choice is to be made are listed one under the other to avoid any possibility of confusion.

5. Three dots (an ellipsis) indicate that the last complete unit is to be repeated one or more times.
A unit is a word (or words) enclosed in braces or brackets.

6. Punctuation, where shown, is required.

7. Compound words consisting of several words separated by hyphens are used to designate elements
of the JOVIAL Language which cannot be adequately described by simple English words. Examples
of this are:

floating-point

table-item-name

closed-compound-procedure-name.

This document supersedes NASP−9288−02H, dated 14 August 1995 and incorporates changes for the Host
Computer System (HCS).

vNASP−9288−02H15 August 1995

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION 1−1 .

1.1 IBM 3083 JOVIAL LANGUAGE 1−1 .

1.1.1 JOVIAL Character Set 1−2 .
1.1.2 JOVIAL Symbolic Names 1−2 .
1.1.3 Data for JOVIAL Programs 1−2 .
1.1.4 Operations in JOVIAL Programs 1−2 .

1.2 PROGRAM ORDER 1−3 .
1.3 COMMENTS 1−4 .
1.4 PROGRAM REGIONS 1−4 .

1.4.1 Accessible Regions 1−4 .

1.5 DATA TYPES 1−4 .

1.5.1 Integer Type 1−5 .

1.5.1.1 Integer Constant Format 1−5 .
1.5.1.2 Integer Variable Field Format 1−5 .

1.5.2 Fixed-Point Type 1−6 .

1.5.2.1 Fixed-Point Constant Format 1−7 .
1.5.2.2 Fixed-Point Variable Field Format 1−7

1.5.3 Floating-Point Type 1−8 .

1.5.3.1 Floating-Point Constant Format 1−9 .
1.5.3.2 Floating-Point Variable Field Format 1−9

1.5.4 Hexadecimal 1−10 .

1.5.4.1 Hexadecimal Constant Format 1−10 .

1.5.5 EBCDIC Type 1−10 .

1.5.5.1 EBCDIC Constant Format 1−10 .
1.5.5.2 EBCDIC Variable Field Format 1−11 .

1.5.6 ASCII Type 1−11 .

1.5.6.1 ASCII Constant Format 1−11 .
1.5.6.2 ASCII Variable Field Format 1−12 .

vi NASP−9288−02H 15 August 1995

TABLE OF CONTENTS (Continued)

Section Page

1.5.7 Status Value Type 1−12 .

1.5.7.1 Status Value Constant Format 1−13 .
1.5.7.2 Status Value Variable Field Format 1−13

1.5.8 Table Address Type 1−13 .

1.5.8.1 Table Address Constant Format 1−13 .

2.0 DESCRIPTION OF DATA 2−1 .

2.1 DATA DECLARATION STATEMENTS 2−1 .
2.2 ITEM DESCRIPTIONS 2−1 .

2.2.1 Parameter ITEM Statement 2−2 .
2.2.2 Compiler-Allocated ITEM Statement 2−2 .

2.3 TABLE DESCRIPTIONS 2−6 .

2.3.1 Compiler-Allocated TABLE Statement 2−6 .
2.3.2 Programmer-Allocated TABLE Statement 2−7 .
2.3.3 Programmer-Allocated ITEM Statement 2−8 .
2.3.4 STRING Statement 2−11 .
2.3.5 Duplicating TABLE Statement 2−13 .
2.3.6 Variable Length Table Entries 2−14 .
2.3.7 Variable Structure Table Entries 2−17 .
2.3.8 Initial Values for Table Items 2−18 .

2.4 ARRAY STATEMENT 2−20 .
2.5 EQUATE STATEMENT 2−21 .

2.5.1 Item Equate 2−21 .
2.5.2 Structure Equate 2−21 .
2.5.3 Dynamic Equate 2−22 .

3.0 REFERRING TO DATA 3−1 .

3.1 SUBSCRIPTS 3−1 .

3.1.1 Subscript Expressions 3−1 .
3.1.2 Reference to Table Items 3−1 .
3.1.3 Reference to Beads in a String 3−2 .
3.1.4 Reference to Elements in an Array 3−2 .

3.2 MODIFIERS 3−3 .

3.2.1 BIT Modifier 3−3 .
3.2.2 BYTE Modifier 3−4 .
3.2.3 ENT Modifier 3−4 .
3.2.4 NENT Modifier 3−5 .
3.2.5 NWDSEN Modifier 3−6 .

viiNASP−9288−02H15 August 1995

TABLE OF CONTENTS (Continued)

Section Page

3.2.6 LOC Modifier 3−7 .
3.2.7 ADR Modifier 3−7 .

4.0 ARITHMETIC EXPRESSIONS 4−1 .

4.1 Arithmetic OPERANDS AND OPERATORS 4−1 .
4.2 RULES OF PRECEDENCE 4−2 .

4.1.2 Mixing Types of Data 4−3 .

4.3 ALIGNMENT 4−5 .

5.0 OPERATIVE STATEMENTS 5−1 .

5.1 STATEMENT LABELS 5−3 .
5.2 CONTROL INFORMATION 5−3 .

5.2.1 START Control Statement 5−3 .
5.2.2 TERM Statement 5−4 .

5.3 DATA MANIPULATION 5−5 .

5.3.1 Assignment Statement 5−5 .
5.3.2 Exchange Statement 5−7 .
5.3.3 REMQUO Statement 5−7 .

5.4 LOGICAL OPERATIONS 5−8 .

5.4.1 IF Statement 5−8 .

5.4.1.1 Conditions 5−9 .
5.4.1.2 Abbreating Complex Conditions 5−11 .
5.4.1.3 The NOT Operator 5−11 .
5.4.1.4 Evaluation of Conditions 5−12 .

5.4.2 IFEITH/ORIF Statements 5−13 .

5.5 SEQUENCE CONTROL 5−14 .

5.5.1 FOR Statement 5−14 .

5.5.1.1 Multiple FOR Statements 5−16 .
5.5.1.2 Nested FOR Statements 5−17 .

5.5.2 ALL Modifier 5−17 .
5.5.3 TEST Statement 5−18 .
5.5.4 GOTO Statement 5−19 .

5.5.4.1 Unconditional Transfers 5−20 .

viii NASP−9288−02H 15 August 1995

TABLE OF CONTENTS (Continued)

Section Page

5.5.5 SWITCH Statement 5−20 .

5.5.5.1 Item Switches 5−20 .
5.5.5.2 Subscript Switches 5−22 .

5.5.6 STOP Statement 5−23 .

6.0 DEFINED PROCEDURES 6−1 .

6.1 CLOSED−COMPOUND PROCEDURES 6−1 .

6.1.1 Form of Closed-Compound Procedure 6−1 .

6.1.1.1 CLOSE Statement 6−1 .

6.1.2 Form of Call to Closed-Compound Procedure 6−2
6.1.3 Example of a Closed-Compound Procedure 6−2 .

6.2 FUNCTIONS 6−3 .

6.2.1 Form of Function 6−3 .

6.2.1.1 PROC Statement 6−4 .

6.2.2 Form of Function Call 6−4 .
6.2.3 Example of a Function 6−5 .

6.3 PROCEDURES 6−6 .

6.3.1 Form of Procedure 6−6 .

6.3.1.1 PROC Statement 6−6 .

6.3.2 Form of Procedure Call 6−7 .
6.3.3 Example of a Procedure 6−8 .

6.4 CLOSED PROGRAMS 6−9 .

6.4.1 Form of a Closed Program 6−9 .
6.4.2 Form of Call to Closed Program 6−9 .
6.4.3 Declaration of a Closed Program 6−10 .

6.5 LIBRARY ROUTINES 6−10 .

6.5.1 Form of Library Routine 6−10 .
6.5.2 Form of Call to Library Routines 6−11 .
6.5.3 Example of a Library Routine 6−11 .

6.6 RETURN STATEMENT 6−11 .
6.7 GENERAL COMMENT ABOUT DEFINED PROCEDURES 6−12
6.8 BLOCK−DATA PROGRAMS 6−12 .
6.9 special restrictions on procedure/function calls 6−12 .

7.0 DIRECT CODE 7−1 .

ixNASP−9288−02H15 August 1995

TABLE OF CONTENTS (Continued)

Section Page

7.1 ASSIGN STATEMENT � REFERENCE TO JOVIAL DATA BY NAME 7−2 . .
7.2 reference to address of jovial data 7−2 .
7.3 reference to jovial statement labels 7−3 .
7.4 ADDITIONAL DIRECT CODE LIMITATIONS 7−3 .
7.5 EXAMPLE OF DIRECT CODE 7−5 .
7.6 BAL DEBUG STATEMENTS USING DIRECT CODE 7−6

7.6.1 Using Debug Statements 7−7 .

7.7 DIRECT CODE COMPOOL REFERENCE 7−7 .

8.0 CONTROL ‘PSEUDO−OPERATIONS’ 8−1 .

8.1 EJECT PSEUDO−OP 8−1 .
8.2 SPACE PSEUDO−OP 8−1 .
8.3 NLIST PSEUDO−OP 8−2 .
8.4 LIST PSEUDO−OP 8−2 .
8.5 SWAP PSEUDO−OP 8−2 .
8.6 RESERVE PSEUDO−OP 8−3 .
8.7 RELEASE PSEUDO−OP 8−3 .
8.8 PSEG PSEUDO−OP 8−4 .
8.9 DUMP PSEUDO−OP 8−4 .
8.10 RELOAD PSEUDO−OP 8−5 .
8.11 TITLE PSEUDO−OP 8−5 .
8.12 HOOK PSEUDO−OP 8−5 .
8.13 INCLUDE PSEUDO−OP 8−5 .
8.14 TABLE PSEUDO−OP 8−6 .

9.0 HELPFUL HINTS FOR JOVIAL USERS 9−1 .

10.0 JOVIAL PROCEDURES 10−1 .

10.1 JOVIAL PROCEDURES 10−1 .

10.1.1 JOVIAL Compilation 10−1 .
10.1.2 Deleted 10−3 .

10.2 DELETED 10−3 .

10.2.1 Deleted 10−3 .
10.2.2 MVS Region Size 10−3 .
10.2.3 Compool Data Sets 10−3 .

10.2.3.1 TAB Data Set 10−3 .
10.2.3.2 RSV Data Set 10−4 .
10.2.3.3 Object Data Set 10−4 .

10.3 DELETED 10−4 .

x NASP−9288−02H 15 August 1995

TABLE OF CONTENTS (Continued)

Section Page

10.3.1 Deleted 10−4 .
10.3.2 Generating a Compool 10−4 .
10.3.3 Deleted 10−5 .

10.4 DELETED 10−5 .

10.4.1 Deleted 10−5 .
10.4.2 Deleted 10−5 .
10.4.3 Deleted 10−5 .

11.0 JOVIAL COMPILER 11−1 .

11.1 COMPILER INPUT 11−1 .
11.2 FUNCTION OF THE COMPILER 11−3 .

11.2.1 Compiler Coordinator 11−3 .
11.2.2 Phase I 11−3 .

11.2.2.1 Scan 11−3 .
11.2.2.2 Tables 11−4 .
11.2.2.3 Process File 11−4 .
11.2.2.4 Storage Assignment 11−4 .

11.2.3 Phase IIA 11−5 .
11.2.4 Phase IID 11−5 .
11.2.5 Phase III 11−5 .

11.3 SUCCESSFUL COMPILATION OUTPUT 11−6 .

11.3.1 XREF Card Image Output 11−6 .

11.4 COMPILER SYSTEM REQUIREMENTS 11−7 .
11.5 COMPILER DIAGNOSTICS 11−7 .

12.0 JOVIAL STRUCTURED LISTING 12−1 .

12.1 COMMENTS 12−2 .
12.2 ERROR MESSAGES 12−2 .

Appendix� A JOVIAL OPERATORS AND RESERVED WORDS A−1 .

Appendix� B STATEMENT FORMATS B−1 .

Appendix� C OPERATIVE STATEMENT SEQUENCING C−1 .

Appendix� D HEXADECIMAL−DECIMAL CONVERSION TABLE D−1 .

Appendix� E DELETED E−1 .

Appendix� F LISTING OF JOVIAL SOURCE PROGRAM F−1 .

Appendix� G JOVIAL COMPILER LIMITS G−1 .

xiNASP−9288−02H15 August 1995

LIST OF ILLUSTRATIONS

Figure Page

2−1 Constants Formats 2−3 .

2−2 Parameter Item Statements 2−4 .

2−3 Field Formats for Compiler−Allocated Item Statements 2−5 .

2−4 Field Formats for Programmer−Allocated Item Statements 2−10 .

2−5 Storage Formats 2−11 .

2−6 Duplicated Table 2−14 .

2−7 Input Information 2−15 .

2−8 Variable−Length Table Entries 2−16 .

2−9 Variable−Structure Table Entries 2−18 .

2−10 Constant Formats 2−19 .

4−1 Result of Mixing Data Types 4−4 .

5−1 Purpose of Operative Statements 5−2 .

7−1 Example of Debug Statements Using Direct Code 7−6 .

11−1 Compiler Input/Output Flow 11−2 .

xii NASP−9288−02H 15 August 1995

LIST OF TABLES

Table Page

10−1 Compool Data Sets 10−3 .

11−1 JOVIAL Diagnostic Messages 11−8 .

12−1 Print Line General Format 12−1 .

12−2 Data Definition Format 12−3 .

D−1 Hexadecimal−Decimal Conversion D−2 .

G−1 JOVIAL Compiler Limits G−1 .

G−2 JOVIAL Compiler Limits (Storage−Independent) G−1 .

G−3 JOVIAL Compiler Procedure/Function Limits G−2 .

1−1NASP−9288−02H15 August 1995

1.0 INTRODUCTION

The JOVIAL language is designed to be used in both scientific and commercial applications. A JOVIAL

language statement is flexible, so that it is not cumbersome for scientific applications, and the variety

of data formats makes it useful for commercial applications.

The JOVIAL language is composed of data declaration statements that assign names to and describe the

forms of data items to be used in the program, and operative statements that specify the operations to

be performed to solve the problem.

Some of the important features of the JOVIAL language are:

1. A method of maintaining independent, externally stored lists of data declaration statements that

can be referred to in any JOVIAL program. A list of these independent data declaration statements

is called a compool. If the use of a compool is requested in a JOVIAL program, the data in

the compool can be referred to just as though it were defined in the JOVIAL program. Rules

for creating and maintaining compools are given in the publication IBM Data Processing System:

Compool Edit User’s Manual (CMPEDT).

2. A facility for incorporating sections of coding written in IBM Basic Assembler Language into

JOVIAL programs. The part of the program written in Basic Assembler Language (BAL) is

called direct code. Any machine instructions and any assembly instructions can be used in direct

code. Conventions have been established to permit direct code references to JOVIAL defined

data. The use of direct code is explained in Section 7.

3. A method of segmenting programs through the use of defined procedures. A defined procedure,

which consists of operative statements and, possibly, data declaration statements, is given a name

and can be called when needed. The five kinds of defined procedures are: closed compound procedures,

functions, procedures, library routines, and closed programs. The form and the provisions for

data communication between regions varies with the type of defined procedure. A region is a

function, a procedure, or a program excluding functions and procedures. Defined procedures

are explained in Section 6.

1.1���IBM 3083 JOVIAL LANGUAGE

IBM 3083 JOVIAL language programs are translated by the IBM JOVIAL Compiler into Basic Assembler

Language which is further translated by the Assembler into loader text. The compiler, which is a component

of the Utility Programming System for the IBM Data Processing System, is described in the IBM Data

Processing System: Compool Edit User’s Manual (CMPEDT).

JOVIAL language programs contain two types of statements:

1. Data declaration statements used by the compiler to determine the form in which data is to

be stored.

2. Operative statements used by the compiler to determine the operations that must be performed

to solve the problem.

1−2 NASP−9288−02H 15 August 1995

1.1.1���JOVIAL Character Set

The JOVIAL character set is composed of 48 characters:

26 letters � A through Z

10 numbers � 0 through 9

12 special characters � characters: + − = ’ (,) . $ / * blank

In a source program the character set can be represented in either EBCDIC or BCD card image codes
except in character type constants. EBCDIC constants can include any EBCDIC character and must be
represented in EBCDIC card image code. ASCII constants can include a subset of the ASCII character
set and must be represented in EBCDIC card image code.

1.1.2���JOVIAL Symbolic Names

A JOVIAL symbolic name is an alphanumeric character string used to identify an element of the user’s
program. It must consist of two to six characters, of which the first must be alphabetic and the remainder
alphabetic or numeric. Symbolic names are used for data declarations, statement labels, procedure and
function declarations, etc. JOVIAL reserved words (see Appendix A) may not be used as symbolic names.

1.1.3���Data for JOVIAL Programs

Data to be used in a JOVIAL program can be read into storage from a peripheral device or can be entered
directly by specifying the value in the program. The JOVIAL language does not contain any input/output
statements. Input and output operations can be specified in direct code or in JOVIAL procedure call statements
to library routines. An explanation of the library routines and their associated procedure call statements
is given in the publication Library Subroutines (LIBRARY) User’s Manual.

Data items can be constants or variables. A constant is an unchanging value. For example, 32 is a constant.
The description of a constant is implicit in its representation, so no data declaration statement need be
given. Constants can appear in operative statements.

A variable is an element of data whose value may change during program execution. For example, if BB
is a variable, the value of BB could be changed from 32 to 18 to 10 during program execution. The initial
values of some variables can be specified by constants or read into storage from peripheral devices. In
either case, an explicit description of the variable must be given in a data declaration statement. The
description includes the name of the variable and a description of the variable field format. Variables are
referred to by name in operative statements. A reference to the name of a variable refers to the current
value of the variable.

Variables can be combined to form tables and arrays. A table is a 2-dimensional structure composed of
a series of repeated entries. An entry is composed of one or more variables. Usually each entry will have
the same format, although the values of the variable fields will differ from entry to entry. Information
in a table is referred to in an operative statement by subscripting the name of a variable in the table
to specify the entry.

An array is a structure of one or more dimensions. Each variable field in the array has the same structure,
but the number of fields in each dimension can be different. An element in an array can be referred
to in an operative statement by subscripting the name of the array, one subscript for each dimension.

1.1.4���Operations in JOVIAL Programs

Operative statements in JOVIAL programs specify arithmetic, logical, and control operations. They can
refer to variables by the name of the variable, to constants by the value of the constant, and to other
operative statements by statement labels that can be assigned to operative statements to identify them.

1−3NASP−9288−02H15 August 1995

Three of the most frequently used operative statements in a JOVIAL program are the Assignment statement,
the GOTO statement, and the IF statement.

The Assignment statement is used to perform arithmetic operations or to set a variable field to the value
of another field. For example, the statement:

CHECK. AA = 37 + BB $

is an Assignment statement, labeled CHECK. When this statement is executed, the current value of the
variable field BB is added to 37 and the sum is stored in the variable field AA. The $ is terminal punctuation
for all JOVIAL statements.

The GOTO statement is used to transfer from one part of a program to another. For example, the statement:

GOTO CHECK $

is a GOTO statement. When this statement is encountered, control transfers to the statement labeled CHECK.

The IF statement is used to evaluate a condition. A condition is a comparison of an expression to a constant
or another expression. The condition will be true or false when the statement is executed depending upon
the current value of the expressions. If the condition is true, the statement after the IF statement is executed.
If the condition is false the second statement after the IF statement is executed. For example,

IF AA EQ BB $

GOTO CHECK $

AA = BB − CC $

is an IF statement whose true exit is the GOTO statement GOTO CHECK $ and whose false exit is the
Assignment statement AA = BB−CC $. If the value of the variable field AA is equal to the value of the
variable field BB when the statement is executed, the true exit is taken. If not, the false exit is taken.

Some of the other operative statements can be used to exchange the values of two variable fields, can
defined procedures, and perform integer division providing a quotient and remainder.

1.2���PROGRAM ORDER

A JOVIAL program has a relatively free format. A few rules have been imposed to ensure efficient compiler
translation. These are:

1. A JOVIAL program begins with a START statement followed by data declaration and operative
statements, and is terminated by a TERM statement.

2. Data declaration statements and operative statements can be mixed in the program, but data
must be declared before it can be referred to in an operative statement.

3. Coding may begin in any column and must not extend beyond column 66. Terms, which make
up statements, must not be split from one line to the next. A new statement need not begin
on a new line. Statements can be continued for as many lines as necessary as long as the statement
(excluding comments) does not exceed 2000 characters and the number of terms does not exceed
256. A list of JOVIAL terms is given in Appendix A.

4. A blank (or blanks) is used to separate terms. Terms must not contain embedded blanks.

5. A dollar sign ($) terminates all statements. A dollar sign must not appear in column 1, or the
statement will be misinterpreted as a system control statement.

1−4 NASP−9288−02H 15 August 1995

6. Every program should have a STOP statement unless it is a library program.

1.3���COMMENTS

Comments are narrative statements that may be written within or between JOVIAL statements. Anywhere

a blank appears or is permitted in a JOVIAL program, a comment may be inserted. Comments are enclosed

in two pairs of single apostrophe marks �...". Any JOVIAL characters may be used in a comment except

consecutive apostrophe marks, or the sequence dollar-blank.

1.4���PROGRAM REGIONS

A single JOVIAL program may be divided by the compiler into several Regions in order to facilitate processing.

Often it is necessary to be aware of the Region structure in order to produce a validly operating program.
The following definitions constitute program regions.

1. Any procedure or function not containing nested procedures or functions.

2. That portion of a main or CLOSE program excluding procedures or functions.

3. The outer PROC in a LIBE program excluding nested procedures or functions.

4. Compool.

The regions can most easily be distinguished by the assigned prefixes. Categories 2 and 3 above always

have the prefix pair A0/A1, and may be referred to as �Main" regions.

1.4.1���Accessible Regions

Data definitions in one region may or may not be usable in code in another region. In order that they

be usable, the region of definition must be �accessible" to the region of use. The following rules define

accessibility:

1. Any region is accessible to itself.

2. Compool, if used, is accessible to any region.

3. The �Main" region is accessible to any procedure or function region.

4. A procedure or function region is not accessible to any region except itself.

1.5���DATA TYPES

The following list gives the types of constants and variables that can be used in a JOVIAL program.

Integer

Fixed-Point

Floating-Point

Hexadecimal

EBCDIC

ASCII

Status value

1−5NASP−9288−02H15 August 1995

Table Address

The following sections give the formats for the different types of data. There is a special format for each
type of constant and each type of variable.

A constant that is written in one of the formats appear directly in an operative statement. A data declaration
statement is not necessary to describe the field format of the constant, because the compiler can determine
the storage format from the form of the constant.

Variables, however, must be described in data declaration statements. The variable field format descriptions
given in the following sections are used as part of several different kinds of data declaration statements.
In addition to specifying the variable field format, data declaration statements also name the variables
and indicate whether they are stored as single items or stored in tables or arrays. Data declaration statements
are described in Section 2.

1.5.1���Integer Type

An integer is a whole number. For example, 23, 467, −3, 0, and 511 are integers. Integers must not contain
decimal points.

When integers end with a large number of zeros (e.g., 56,000,000 or −20,000,000,000), it is easier to write
them as an integer number times a multiple of 10 than to write out all the zeros. For example, 56,000,000
is equal to 56 x 106; −20,000,000,000 is equal to −2 x 1010 (or −20 x 109, etc.).

1.5.1.1���Integer Constant Format.���The format of integer constant is:

integer
integerE+n
integerEn

integer 1 to 10 decimal digits, optionally preceded by a sign.

E Required to indicate that the number following is an exponent (power) of 10.
This is just short representation of the symbols �x 10" in the examples given
above. For example, 26 x 103 is written in the JOVIAL format as 26E3.

n Positive integer representing the power to which 10 is raised before it is multiplied
by the integer. If the plus sign is omitted, it is assumed.

RESTRICTIONS: The following restrictions apply to integer constants.

1. An integer consists of from 1 to 10 decimal digits.

2. The absolute value of an integer must not exceed 231−1. If it exceeds 231−1, it is set to 0 and
a warning message is issued.

3. When an integer is used as a subscript (described in the section �Referring to Data"), it is treated
modulo 224.

1.5.1.2���Integer Variable Field Format.���Descriptions of variable fields to contain integer data have
the form:

I bits [sign]

1−6 NASP−9288−02H 15 August 1995

I Specifies integer type.

bits Total number of binary bits required to represent the largest number anticipated.
It must include one bit for the sign if the item will contain a signed value. The
total number of bits, including the sign bit, must not exceed 32. Appendix D
contains information about the number of binary bits required for a decimal
number.

sign The letter S or U. S indicates that the values will be signed. They may be positive
or negative. U indicates that the values will be unsigned. If the sign designator
is omitted, it will be assumed to be signed.

RESTRICTIONS: The following restrictions apply to integer variable fields.

1. If an integer value is too large for a field, the high-order bits are truncated. For example, a
3-bit field will be set to 1(001) if the value 9(1001) is assigned to it.

2. If an integer value does not fill a field, it is right justified and the field is filled out with leading
zeros.

EXAMPLES OF INTEGER DATA: In the following examples, the constants would be permissible values
for the corresponding variable field.

Variable Description Constant

I �2 U 3

I �6 S +25

I 14 S −4096

I 32 U 2147483647

I 15 U 25E3

I 32 S −36E7

I 32 U 60E+7

1.5.2���Fixed-Point Type

A fixed-point number is a real number. It consists of a whole number and a fraction, which is separated
from the number by a decimal point. For example, 32.5, −1.6,.032, and 6. are fixed-point numbers.

Although the customary way to write fixed-point numbers is a whole number and a fraction, fixed-point
numbers can be represented as a number times a power of 10. This is permitted whenever it is convenient,
including, for example, 6.106,.7x10−6, and 77.63x101 to represent 6,000,000,.0000007, and 776.3, respectively.

In the JOVIAL format the location of the binary point as well as the decimal point must be given. The
binary point location tells how much significance (how many binary digits) are to be allocated to the
fractional part of the fixed-point number. The hexadecimal-decimal conversion table in Appendix D can
be used to aid in determining how many binary bits are required to store the fractional part of a decimal
(base 10) number.

1−7NASP−9288−02H15 August 1995

1.5.2.1���Fixed-Point Constant Format.���The format of a fixed-point constant is:

fixed-pointAm

fixed-pointAmEn

fixed-pointAmE+n

fixed-pointAmE−n

fixed-pointEnAm

fixed-pointE+nAm

fixed-pointE−nAm

fixed-point Number consisting of from 1 to 10 decimal digits and an explicit decimal point.

It is optionally preceded by a plus or minus sign. If the sign is omitted, the

number is assumed to be positive.

A Required to indicate that the number following is a binary point specification.

m An unsigned integer specifying the scale factor (number of bits to the right of

the binary point). It must not exceed 31. It must always be specified even if

the value is 0, indicating that the constant is an integer.

E Required to indicate that the number following is a power of 10.

n Integer representing the power to which 10 is raised before it is multiplied by

the fixed-point number. If the sign is omitted, it is assumed to be plus.

RESTRICTIONS: The following restrictions apply to fixed-point constants.

1. The absolute value of a fixed-point constant must not exceed 231 −1. That is, it must not be

less than −2,147,483,647 nor greater than +2,147,483,647.

2. If the scale factor is too large, if the number exceeds 10 digits, or if a 10-digit number is outside

the permissible range, the number is cleared to 0 and a warning message is issued.

3. If the scale factor is not large enough to accommodate the fractional portion, the fractional

portion is truncated, and the integer portion is not changed. A warning message is issued.

1.5.2.2���Fixed-Point Variable Field Format.���The format of variable fields that will contain fixed-point

data is:

A bits [sign] [scale]

A Specifies fixed-point type.

bits Total number of binary bits required to represent the largest number anticipated.

It must include one bit for the sign if the values are signed. The total number

of bits, including the sign bit, must not exceed 32. See Appendix D.

sign The letter S or U. S indicates that the values will be signed. They may be positive

or negative. U indicates that the values will be unsigned. If the sign designator

is omitted, it will be assumed to be signed.

1−8 NASP−9288−02H 15 August 1995

scale Indicates the number of binary digits to the right of the binary point specification,
thus specifying the accuracy desired. The scale must not exceed 31 bits and must
not exceed the total number of magnitude bits. If the scale is omitted, it is assumed
to be 0.

RESTRICTIONS: The following restrictions apply to fixed-point variable fields:

1. If a fixed-point number is too large for the field, it is aligned by the binary point specification,
and low-order fraction bits and high-order integer bits are truncated.

2. If a fixed-point number does not fill the field, it is aligned by the binary point specification
and extra high-order and/or low-order bits are set to 0.

EXAMPLES OF FIXED−POINT DATA: In the following examples, the constants would be permissible
values for the corresponding variable field.

Variable Description Constant

A �6 U 3 5.2A3

A �3 U 4.A0 (treated as integer 4)

A 32 S 1 −032145.A1

A 16 U 3 5.2A3E2

A 16 S 2 +6.8E3A2

1.5.3���Floating-Point Type

A floating-point number is also a real number. It consists of a whole number and a fraction (which is
separated from the whole number by a decimal point) times a power of 10. For example, 21.2 x 104, −3.6
x 102,4. x 10−6, and .32 x 102 are all floating-point numbers.

Floating-point numbers can be written as just a whole number and a fraction, and the power of 10 is
assumed to be 0. For example, 3.26 is equivalent to 3.26 x 100.

The major difference between fixed-point and floating-point numbers is in how they are stored in the
computer.

A fixed-point number is stored, in binary, as a whole number and a fraction separated by a binary point.

A floating-point number is stored, in binary, as an exponent and a fraction. The exponent occupies bits
1−7 and the fraction occupies the remainder of the word including bit 0, which contains the sign of the
fraction. The quantity expressed by this number is the product of the fraction and the number 16 raised
to the power of the exponent.

Very large numbers should be stored in floating-point format since they can be manipulated with less
possibility of a loss of accuracy than fixed-point numbers.

1−9NASP−9288−02H15 August 1995

1.5.3.1���Floating-Point Constant Format.���The format of floating-point constants is:

floating-point
floating-pointE+n
floating-pointEn
floating-pointEn

floating-point Number consisting of from 1 to 8 decimal digits and an explicit decimal point.
It is optionally preceded by a plus or minus sign. If the sign is omitted, it is
assumed to be positive.

E Required to indicate that the number following is a power of 10.

n Integer representing the power to which 10 is raised before it is multiplied by
the floating-point number. If the sign is omitted, it is assumed to be plus.

RESTRICTIONS: The following restrictions apply to floating-point constants.

1. The largest permissible floating-point constant is ±.72,370,051x1076; the smallest is
±.53,976,054x10−78.

2. If the entire floating-point number (sign, decimal digits, decimal point, E, and exponent) exceeds
15 characters, the number is set to 0 and a warning message is issued.

3. If the number of decimal digits exceeds 8, the excess low-order digits are ignored, but the exponent
is adjusted. No warning message is issued.

4. If the number is greater than the maximum permissible number, there is a loss of accuracy
in the low-order digit. No message is issued.

5. If the number is less than the minimum permissible number, the number is set to 0, but no
message is issued.

6. If the exponent is greater than 76, the number is set to the maximum positive floating-point
number (72,370,051x1076) and a warning message is issued.

7. If the exponent is less than −78, the number is set to 0. No message is issued.

1.5.3.2���Floating-Point Variable Field Format.���Floating-point fields are used when the number
of decimal digits in the values is either large or unpredictable. Floating-point numbers are stored alone
in full computer words. The format of variable fields that will contain floating-point data is:

F

F Indicates floating-point type data.

RESTRICTIONS: The following restriction applies to floating-point variable fields.

Floating-point numbers must not exceed the limits ±7x1075 and ±5X10−79. It is the programmer’s responsibility
to ensure this; otherwise, results are unpredictable.

EXAMPLES OF FLOATING-POINT DATA: In the following examples, the constants would be permissible
values for the corresponding variable field.

1−10 NASP−9288−02H 15 August 1995

Variable Description Constant

F 9.321

F +99.012

F −5000.99

F 00012.592 (leading zeros ignored)

F 3.2E+6

F −31.5E+7

F .4

F 6.

1.5.4���Hexadecimal

Hexadecimal data is represented to the base 16. It is composed of from 1 to 16 alphanumeric characters

chosen from the numbers 0 through 9 and the letters A through F. It is unsigned. Hexadecimal numbers
are manipulated as though they were unsigned integers and may be used wherever an integer value may
be used. The usual use of a hexadecimal constant is to set up a bit pattern in a field. Appendix D contains

decimal to hexadecimal conversion tables.

1.5.4.1���Hexadecimal Constant Format.���The format of a hexadecimal constant is:

X(hexadecimal-number)

X indicates hexadecimal

hexadecimal-number Unsigned number to the base 16 composed of from 1 to 16 hexadecimal characters.

EXAMPLES OF HEXADECIMAL CONSTANTS: Hexadecimal variable fields are not permitted. The following
are examples of hexadecimal constants.

Constant

X(7AC)

X(23FD0C98A)

1.5.5���EBCDIC Type

EBCDIC data is made up of from one to eight characters chosen from the 256-character EBCDIC character

set.

1.5.5.1���EBCDIC Constant Format.���The format of EBCDIC constants is:

pH(characters)

1−11NASP−9288−02H15 August 1995

P Positive number indicating the number of characters enclosed in parentheses.
It must not exceed eight.

H Specifies EBCDIC type.

characters From one to eight EBCDIC characters depending upon �P."

1.5.5.2���EBCDIC Variable Field Format.���The format of variable fields that will contain EBCDIC
data is:

H limit

H Indicates EBCDIC

limit Maximum number of characters in the largest EBCDIC value. It must not exceed

eight.

RESTRICTIONS: The following restrictions apply to EBCDIC variable fields.

1. If EBCDIC data is too large to fit in the field, high-order bits are truncated.

2. If EBCDIC data does not fill the field, it is right-justified and preceded by leading zeros.

EXAMPLES OF EBCDIC DATA: In the following examples, the constants would be permissible values

for the corresponding variable field.

Variable Description Constant

H 6 6H(JOVIAL)

H 3 3H(5 b/ 3)

H 5 5H($1.25)

H 8 7H(SMALLER)

H 6 7H(TOO b/ BIG)

1.5.6���ASCII Type

ASCII data is composed of from one to eight characters chosen from the 128-character ASCII character

set. However, since JOVIAL source programs are coded in EBCDIC, only the subset of ASCII in EBCDIC

may be used in ASCII constants. EBCDIC constants will be converted to their ASCII equivalent in storage.
Other characters will be converted to ASCII null (code 00).

1.5.6.1���ASCII Constant Format.���The format of ASCII constants is:

pC(characters)

p Positive number indicating the number of ASCII characters enclosed in parentheses.

It must not exceed eight.

1−12 NASP−9288−02H 15 August 1995

C Specifies ASCII type.

characters From one to eight ASCII characters, depending upon �p."

1.5.6.2���ASCII Variable Field Format.���The format of variable fields that will contain ASCII data

is:

C limit

C Indicates ASCII type.

limit Positive number specifying maximum number of characters in the largest ASCII
value. It must not exceed eight.

RESTRICTIONS: The following restrictions apply to ASCII variable fields.

1. If ASCII data is too large for the field, high-order bits are truncated.

2. If ASCII data does not fill the field, it is right-justified and preceded by leading zeros.

EXAMPLES OF ASCII DATA: In the following examples, the constants would be permissible values for

the corresponding variable field.

Variable Description Constant

C 1 1C(�)

C 4 4C(2 b/ b/ 4)

C 3 3C(RAL)

C 5 5C($1.25)

C 8 7C(SMALLER)

C 6 7C(TOO b/ BIG)

1.5.7���Status Value Type

Status value variables are a special class of unsigned integer variable, each of whose values is assigned
a symbolic name (status value constant) by the programmer. Status value constants may be used only
when their relationship to a variable can be unquestionably construed from the context. This is necessary

because identical status value constants may represent different numeric values when assigned to different
status value variables and the symbolic names may be the same as other symbolic names used in a program.

This data type is used for information which, while it must be reduced to numeric representation within

a computer, is logical in nature and can be more meaningfully described by a symbolic name. For example,
in describing color, words like �red", �blue", or �green" are more convenient than the numbers �0", �1",

or �2".

While the numeric representation of a status value constant is not normally of interest, it may be determined
from the constant’s position in the variable data declaration because the status value constants are assigned

the values 0, 1, 2,... in order of appearance in the statement.

1−13NASP−9288−02H15 August 1995

1.5.7.1���Status Value Constant Format.���The format of status value constants is:

V(status-name)

V Indicates status value.

status-name One to six alphanumeric characters, the first of which is alphabetic.

1.5.7.2���Status Value Variable Field Format.���The format of variable fields that will contain status

values is:

S V(status-name) V(status-name) [V(status-name)] ...

S Indicates status value.

V(status-name) Status value constant.

EXAMPLES OF STATUS VALUE DATA: In the following examples, the constants used in the variable

field description are the only values the variable field can assume.

Variable Description Constant

S V(YES) V(NO) V(YES) = 0

V(NO) = 1

S V(RED) V(BLUE) V(RED) = 0

V(BLUE) = 1

1.5.8���Table Address Type

Subject to the following restrictions, a table name or unsubscripted array name can be used as a constant

whose value is the beginning storage address of the table or array. These constants are 24-bit unsigned

integers.

1.5.8.1���Table Address Constant Format.���The format of a table address constant is:

symbolic-name

symbolic-name Name of a table or array.

RESTRICTIONS: The following restrictions apply to table address constants.

1. Table address constants may be used only as input parameters in function and procedure calls.

(See �Defined Procedures".)

2. Table address constants may be used as single parameters only and may never be combined

with other operands in an expression.

2−1NASP−9288−02H15 August 1995

2.0 DESCRIPTION OF DATA

Data items used in a JOVIAL program must be described in data declaration statements before they can
be manipulated in operative statements. The description names the data items and indicates their forms.

Data used in a JOVIAL program can be constant or variable. Constant data is entered by specifying the
value directly in the program. The compiler sets up a storage area in the proper format.

The programmer describes the fields for storing variable items. He specifies the general format of the
variable field (type, size, etc.) and assigns a name to the variable. The values in the field can be changed
during program execution by referring to the variable by name. The section �Referring to Data" explains
how variable information is used in operative statements.

2.1���DATA DECLARATION STATEMENTS

Data declaration statements specify whether variables are stored as single independent items, are combined
with other variables to form a table, or stored as an array of one or more dimensions. In either case,
a description the type of variable (fixed-point, integer, etc.) must be given.

If variables are combined to form a table, data declaration statements specifying the size and structure
of the table must also be given.

The following statements are used to describe data fields.

Statement Purpose

ITEM Describes field format for single variables and for variables to be combined to
form a table.

TABLE Specifies the number of entries in a table and gives the entry structure. ITEM
and STRING statements are used to describe the variables that make up an
entry.

STRING Describes a special type of variable used in a table entry.

ARRAY Describes the format of an array by giving the number of dimensions and size
of each dimension and the variable field format of the elements in the array.

EQUATE Allows two or more single items, tables, or arrays to use the same storage area.

2.2���ITEM DESCRIPTIONS

There are three types of ITEM statements.

1. The parameter ITEM statement assigns names to constants.

2. The compiler-allocated ITEM statement describes variables unrelated to other variables (single
items) and variables grouped to form compiler-allocated tables (table items). With this type of
statement, the compiler determines how the items are to be allocated in computer words.

3. The programmer-allocated ITEM statement describes table items in programmer-allocated tables.
The programmer specifies how the items are to be located in computer words. Because programmer-al-
located ITEM statements are used only to describe entries in programmer-allocated tables, this
type of statement is explained in the section �Programmer-Allocated TABLE Statement".

2−2 NASP−9288−02H 15 August 1995

2.2.1���Parameter ITEM Statement

The parameter ITEM statement is used to assign a symbolic name to a constant value, so that the symbolic
name can be used instead of the constant in operative statements. The primary advantage of named constants
is that if the constant is changed from one compilation of the program to another, only the constant value
in the parameter ITEM statement need be changed.

It is not necessary to specify a field format in the statement since the compiler determines storage allocation
from the constant value.

The format of a parameter ITEM statement is:

ITEM item-name constant-value $

item-name A programmer-assigned symbolic name. This name is used to refer to the constant
value.

constant-value Any constant written in one of the formats shown in Figure 2−1. A complete
description and examples of constant formats are given in Section 1, under �Data
Types".

RESTRICTIONS: The following restrictions apply to parameter ITEM statements.

1. The value of the constant can not be changed during program execution.

2. Status value and table address constants must not be used in parameter ITEM statements.

3. A parameter ITEM statement cannot be used instead of compiler-allocated or programmer allocated
ITEM statements to describe a table entry.

4. Whenever an integer constant can be used in a data declaration statement (e.g., number of
words in an entry), an integer parameter item may be substituted, provided that the parameter
item is defined in an accessible region.

EXAMPLES: The examples in Figure 2−2 show parameter ITEM statements.

2.2.2���Compiler-Allocated ITEM Statement

The compiler-allocated ITEM statement is used to describe single items or table items in a compiler-allocated
table.

2−3NASP−9288−02H15 August 1995

Type of Constant Format

Integer
integer
integerE+n
integerEn

Floating-point

floating-point
floating-pointE+n
floating-pointEn
floating-pointE−n

Fixed-point

fixed-pointAmE±n
fixed-pointE±nAm
fixed-pointAm
fixed-pointAmEn
fixed-pointEnAm

Hexadecimal X(hexadecimal)

EBCDIC pH(EBCDIC-characters)

ASCII pC(ASCII-characters)

Explanation of format

integer 1 to 10 decimal digits, optional sign.

floating-point 1 to 8 decimal digits, explicit decimal point, optional sign.

fixed-point 1 to 10 decimal digits, explicit decimal point, optional sign.

hexadecimal 1 to 16 alphanumeric characters, no sign.

EBCDIC-characters 1 to 8 characters from complete EBCDIC character set.

ASCII-characters 1 to 8 characters from the ASCII character set.

n Exponent. Integral power of 10 by which number is multi-
plied.

m
Binary point specification. Unsigned integer specifying
number of bits to right of binary point.

p
Positive number indicating maximum number of characters
in EBCDIC or ASCII constant.

FIGURE 2−1.���CONSTANTS FORMATS

2−4 NASP−9288−02H 15 August 1995

Example Meaning

ITEM EDIT 4H(EDIT) $ The name EDIT refers to the EBCDIC constant EDIT.

ITEM NTGR −64 $ The name NTGR refers to the integer constant −64.

ITEM EX 2.7183 $ The name EX refers to the floating-point constant 2.7183.

ITEM EXFIX 2.7183A16 $
The name EXFIX refers to the fixed-point constant 2.7183
(which has 16 binary bits to represent .7183).

FIGURE 2−2.���PARAMETER ITEM STATEMENTS

The format of the compiler-allocated ITEM statement is:

ITEM item-name field-format $

item-name A programmer-assigned symbolic name. When this name is used in an operative
statement, it refers to the current value of the item.

field-format The variable field format of the item. Figure 2−3 gives the codes used to specify
field formats. A detailed description of variable field formats is given in Section
1, under �Data types".

RESTRICTIONS: The following restrictions apply to single items described by compiler-allocated ITEM
statements.

1. Fixed-point values are aligned by the binary point when they are stored in the field by operative
statements. Leading and trailing zeros are supplied for values not large enough to fill the fields.
High-order integer bits and/or low-order fractional bits are truncated if the values are too big
for the field.

2. If binary point alignment is not required, values are right-justified in the field and preceded
by leading zeros, if necessary. High-order integer bits are truncated if the values are too big
for the field.

3. Floating-point numbers are stored alone in a full-word.

Rules for compiler-allocated table items are given in Section 2, under �Compiler-Allocated TABLE Statement".

EXAMPLES: The following examples show compiler-allocated ITEM statements.

Example Meaning

ITEM FF F $ Item FF contains floating-point data.

ITEM II I 5 S $
Item II contains signed integer data with a maximum size of four binary
bits and a sign.

ITEM AA A 8 U 4 $
Item AA contains unsigned fixed-point data whose maximum size is eight
bits, four bits of which are to the right of the binary point.

ITEM HH H 5 $ Item HH contains EBCDIC data whose maximum size is five characters.

ITEM CC C 5 $ Item CC contains ASCII data whose maximum size is five characters.

2−5NASP−9288−02H15 August 1995

Type of Item Format

Integer I bits [sign]

Floating-point F

Fixed-point A bits [sign] [scale]

EBCDIC H limit

ASCII C limit

Status S V(status-name)
V(status-name)
[V(status-name)]...

Explanation of format

bits
Total number of bits required to store largest integer or
fixed-point number. The number of bits must not exceed 32,
including the sign.

sign
The letters S or U. S represents signed items. U represents
unsigned items. If the sign designator is omitted, items are
assumed to be signed.

scale
Number of bits to the right of the binary point. If it is
omitted, it is assumed to be zero. Scale must not exceed 31.

limit
Number of characters in EBCDIC or ASCII item. The num-
ber of characters must not exceed 8.

V(status-name) Status value constant.

FIGURE 2−3.���FIELD FORMATS FOR COMPILER−ALLOCATED ITEM STATEMENTS

2−6 NASP−9288−02H 15 August 1995

2.3���TABLE DESCRIPTIONS

A table is a list of information. The rows of the table are called entries. The columns of the table are
called table items or items in the entry. All of the items in one column have the same variable field format.
For example, consider a population table composed of 50 entries, one for each state. Each entry contains
two items: the name of the state and the population of that state. It is not necessary to specify the format
of each of the 50 entries. A description of one entry is all that is necessary. It would consist of an EBCDIC
(or ASCII) item to contain the state name and an integer item big enough to contain the largest state
population. A TABLE statement is used to specify that this entry format is to be repeated 50 times.

A description of a table has two major parts. The first is the TABLE statement specifying the general
format of the table. The second is one or more ITEM statements specifying the entry format. An entry
may not exceed 4096 bytes.

There are two categories of tables: programmer-allocated tables and compiler-allocated tables. The programmer
specifies the arrangement of the entries in computer words for programmer-allocated tables by using program-
mer-allocated ITEM statements to describe the entry format. The compiler determines storage allocation
for compiler-allocated tables.

Subscripts are used to refer to particular entries in a table or to items in an entry. Modifiers can be
used to determine special kinds of information about a table; e.g., number of words in an entry and number
of entries in a table. They can also be used to refer to an entire table or particular pieces of data in
a table and to modify a table structure. Rules for subscripts and modifiers are given in Section 3, �Referring
to Data".

There are some special statements that make table descriptions easier. The STRING statement is used
to repeat variable field formats within an entry to form variable-length entries. The duplicating TABLE
statement is used to repeat the format of an entire table.

The operative statement FOR is particularly useful for manipulating information in tables (see Section
5, �Operative Statements").

2.3.1���Compiler-Allocated TABLE Statement

The compiler determines how items in compiler-allocated tables are to be located in computer words. The
programmer can specify in the TABLE statement whether the items are to be stored in fullwords, half-words,
or bytes, and whether the table is to be fixed or variable in length. If he wishes to provide more detailed
instructions for storage allocation, he must use the programmer-allocated TABLE statement. Compiler-allocated
ITEM statements follow the TABLE statement to specify the entry format.

The format of a compiler-allocated TABLE statement, followed by compiler-allocated ITEM statement is:

TABLE table-name

N
V M $

entry-limit D
R B

BEGIN item-statement

[item-statement]...END

table-name Programmer-assigned symbolic name used to refer to the table.

V Indicates variable-length table.

2−7NASP−9288−02H15 August 1995

R Indicates fixed-length table.

entry-limit Number of entries in fixed-length table and maximum number of entries in variable-
length table.

N Specifies that each item is stored by itself in a fullword if it will fit, or in two
consecutive fullwords, right-justified.

M Specifies that each item is stored by itself in a halfword if it will fit, in a fullword,
or in two consecutive fullwords, right-justified.

D Specifies that each item is stored in the smallest number of bytes required to
hold it.

B Same as D.

If N, M, B or D is not specified, N-type packing is automatically provided.

BEGIN JOVIAL opening bracket. Indicates that the ITEM statements that follow describe
the table entry.

item-statement Compiler-allocated ITEM statement describing an item in the entry.

END JOVIAL closing bracket. Indicates the end of the entry description.

RESTRICTIONS: The following restriction applies to compiler-allocated tables.

If M is given as the packing factor, the maximum number of information bits exclusive of sign that can
be stored in a halfword is 15. That is, 2-character EBCDIC or ASCII items, or 16-bit unsigned integer
or fixed-point items will be stored in fullwords.

EXAMPLE: The following statements are used to describe a compiler-allocated table containing state names
and state populations.

TABLE STPOP R 50 N $

BEGIN

ITEM STATE C 8 $

ITEM POP F $

END

The fixed-length Table STPOP contains 50 entries. Each entry contains two items; an ASCII item for
the state name and a floating-point item for the population. The floating-point items are stored separately
in fullwords, the ASCII items are stored separately in two consecutive words.

2.3.2���Programmer-Allocated TABLE Statement

In programmer-allocated tables, the programmer can specify the allocation of storage for items within
entries of the table. He does this by describing the entry format with programmer-allocated ITEM statements
and/or STRING statements that specify the word and bit location for the item. A table may be declared
without items or strings, simply to allocate storage. The BEGIN and END brackets are still required.

The format of a programmer-allocated TABLE statement followed by programmer-allocated ITEM statements
or STRING statement is:

2−8 NASP−9288−02H 15 August 1995

V
TABLE table-name entry-limit

R

word-limit �V $

BEGIN item-statement
string-statement

item-statement
string-statement . . .END

table-name Programmer-assigned symbolic name.

V Variable-length table.

R Fixed-length table.

entry-limit Number of entries for fixed-length tables and maximum number of entries for
variable-length tables.

word-limit Number of words per entry. (When variable length entries are to be used, as
discussed under �Variable Length Table Entries", the word limit should be 1
and the entry limit should be the entire number of words allocated to the table.)
This value may not exceed 1024.

V (preceding $ sign) Variable-entry-length table. Suppresses diagnostic warning �WORD NUMBER
IN THIS DECLARATION INCONSISTENT WITH ENTRY LENGTH."

BEGIN JOVIAL opening bracket. Indicates that the statements that follow are related
and describe the table entry.

item-statement A programmer-allocated ITEM statement; explained under �Programmer-Allocated
ITEM Statement."

string-statement A STRING statement. Explained under �STRING Statement."

END JOVIAL closing bracket. Indicates end of entry format.

2.3.3���Programmer-Allocated ITEM Statement

The programmer-allocated ITEM statement allows the programmer to specify the allocation of storage
for items in a table. It is used only to define items in programmer-allocated tables.

The format of the programmer ITEM statement is:

ITEM item-named field-format start-word

N
M

start-bit D
B

2−9NASP−9288−02H15 August 1995

item-name Programmer-assigned symbolic name

field-format The variable field format of the item. Figure 2−4 gives the codes used to specify
field-format.

start-word Word that the item will occupy in the table entry. Word count starts with 0.

start-bit Starting bit position for item in the computer word. Bit numbering starts with
0.

N Code that indicates item is alone in a fullword or two fullwords and is right-justified.

M Code that indicates item is alone and right-justified in a halfword. A maximum
of 15 magnitude bits are permitted; i.e., I 15 U and I 16 S are legal, but I 16
U is not.

D Code that indicates item occupies only as many bits as necessary to hold it.

B Code that indicates item is unsigned and alone and right-justified within a byte.

2−10 NASP−9288−02H 15 August 1995

Type of Item Format

Integer I bits [sign]

Floating-point F

Fixed-point A bits [sign] [scale]

EBCDIC H limit

ASCII C limit

Status S V(status-name)
V(status-name)
[V(status-name)]...

Explanation of format

bits

Total number of bits required to store largest integer or
fixed-point number. Total number of bits required to store
number representing number of status values in programmer-
allocated items. The number of bits must not exceed 32.

sign
The letters S or U. S represents signed items. U represents
unsigned items. Unsigned items are assumed to be positive.

scale
Number of bits to the right of the binary point. If it is
omitted, it is assumed to be zero. Scale must not exceed 31.

limit
Maximum number of characters in EBCDIC or ASCII item.
The number of characters must not exceed 8.

V(status-name) Status value constant.

FIGURE 2−4.���FIELD FORMATS FOR PROGRAMMER−ALLOCATED ITEM STATEMENTS

2−11NASP−9288−02H15 August 1995

RESTRICTIONS: The following restrictions apply to programmer-allocated ITEM statements.

1. Integer and fixed-point items must not cross a word boundary.

2. Floating-point items require fullwords, and must be declared as N-packed.

3. EBCDIC or ASCII items of four or fewer characters must not cross a word boundary.

4. EBCDIC or ASCII items of more than four characters must not cross two word boundaries.

5. M cannot be specified as the packing factor for 2-character EBCDIC and ASCII items, or 16-bit
unsigned integer or unsigned fixed-point items.

6. B cannot be specified as the packing factor for signed items.

EXAMPLE: The following example is a description of a programmer-allocated table.

Statement Comments

TABLE AA R 1000 3 $ Table AA has 1000 entries. Each entry occupies 3 words.

BEGIN Opening bracket.

ITEM BB I 15 U 2 3 D $ Unsigned integer field BB begins in bit 3 of word 2 and occupies
15 bits.

ITEM CC H 2 0 16 N $ EBCDIC field CC begins in bit 16 of word 0 and is alone and
right-justified in a fullword.

ITEM DD I 2 U 2 18 D $ Unsigned integer field DD begins in bit 18 of word 2 and occu-
pies 2 bits.

ITEM EE S 2 V (DRY)
V(DAMP) V(MOIST)
V(WET) 1 6 B $

Status field EE begin in bit 6 of word 1. It occupies 2 bits
because the number 3 representing the last status value V(WET)
can be stored in a 2-bit field.

END Closing bracket.

Figure 2−5 gives the storage format for an entry in Table AA.

word 0 word 1 word 2

16 CC
16 6

EE
2 3

BB
15

D
2 1224

FIGURE 2−5.���STORAGE FORMATS

2.3.4���STRING Statement

The STRING statement is used to specify the repetition of variable field formats in programmer allocated
table entries. Each repetition in a string is called a bead. The number of beads can vary (under programmer
control) from entry to entry. This is explained under �Variable-Length Table Entries."

2−12 NASP−9288−02H 15 August 1995

Several beads of a string can appear in one computer word and then a word or words (possibly containing
single items or beads from another string) can be skipped and several beads can appear in the next computer
word.

The STRING statement specifies the number of beads in a computer word, their location in the word,
and the number of words before the appearance of the next bead in the same string. The format of the
STRING statement is:

STRING string-name field-format start-word

N
M

start-bit D skip bead-limit $
B

string-name Programmer-assigned symbolic name.

field-format Variable field format of the beads in the string. Codes for variable field formats
are given in Figure 2−4.

start-word Computer word that the first bead will occupy in an entry. Word numbering
starts with 0.

start-bit Starting bit for first bead in each computer word that contains beads of the
string. Bit numbering starts with 0.

N Bead is alone and right-justified in a fullword.

M, All beads are alone and right-justified in a halfword.

D Bead occupies only as many bits as declared.

B All beads are alone and right-justified in a byte.

skip Number of computer words to the next word that contains beads. For example,
if words 3, 5, and 7 of a entry contain beads, skip would be 2.

bead-limit Maximum number of beads in one computer word.

RESTRICTIONS: The following restrictions apply to strings.

1. Strings can be used only in programmer-allocated tables.

2. Initial values cannot be assigned to beads in a string.

3. A bead must not cross a word boundary.

4. If more than one bead is assigned to a single computer word, following beads are positioned,
with no space, immediately to the right of the previous bead.

5. M cannot be specified as the packing factor for 2-character EBCDIC and ASCII beads, or 16-bit
unsigned integer or unsigned fixed-point beads.

6. B cannot be specified as the packing factor for signed beads.

EXAMPLE: The following example shows a programmer-allocated table whose entries are described with
programmer-allocated ITEM statements and STRING statements.

2−13NASP−9288−02H15 August 1995

TABLE ZZ R1000 1 $

BEGIN

ITEM AA I 32 U 0 0 N $

ITEM BB I 32 U 1 0 N $

STRING CC A 10 U 4 2 0 D 2 3 $

STRING DD F 3 0 N 2 1 $

END

1. Fixed-length Table ZZ has 1000 1-word entries.

2. The ITEM and STRING statements describing the entry format in Table ZZ are enclosed in
BEGIN and END brackets.

3. The 32-bit unsigned integer field AA starts in bit 0 of word 0. It is alone and right-justified
in a fullword.

4. The 32-bit unsigned integer field BB starts in bit 0 of word 1. It is alone and right-justified
in a fullword.

5. String CC is composed of 10-bit unsigned fixed-point beads with a binary point specification
of four. The first bead in an entry starts in bit 0 of word 2. One computer word separates
each word containing beads; i.e., words 2, 4, 6, etc., may contain beads. There may be three
beads in each computer word. They are neither alone nor right-justified in the words.

6. String DD contains floating-point beads. The first bead starts in bit 0 of word 3. Two computer
words separate words containing beads. There is one bead per computer word. It is alone and
right-justified in the word.

7. The programmer must control the number of computer words in each entry that contains beads.
�Variable-Length Table Entries" explains how this is done.

2.3.5���Duplicating TABLE Statement

The duplicating TABLE statement is used to describe a new table whose entry format is identical to another
table in the same region. (A region is a function or a procedure or a program excluding functions and
procedures. Functions and procedures are explained in Section 6, �Defined Procedures.") The values, the
number of entries, and the specification of whether the table is fixed or variable in length for the new
table may differ from the original table. The original table is not affected by the duplication. The format
of the duplicating TABLE statement is:

TABLE�modified-table-name����VR���entry-limit���L$

modified-table-name The name of the original table modified by the addition of a 1-character alphanumeric
suffix. The new name must be a permissible symbolic name.

V Indicates variable length.

R Indicates fixed length.

entry-limit Maximum number of entries for variable-length table and number of entries
for fixed-length table.

2−14 NASP−9288−02H 15 August 1995

L Indicates duplicating TABLE statement.

RESTRICTIONS: The following restrictions apply to duplicating tables.

1. The original table must be declared in a region accessible to the region in which the duplicating
table statement appears, or the original must be in compool.

2. If the program is recompiled with a new description for the original table, the duplicated table
will be changed accordingly.

3. Any preset contains in the original table will not be duplicated in the new table.

4. If the original table and the new table are to share the same storage area, an EQUATE statement
must be used.

5. All items in the new tables are referred to by the item-names in the original table modified
by the 1-character alphanumeric suffix. For this reason, the original table and table item names
must not exceed five characters.

6. If the length specification (variable or fixed) is omitted, it is assumed to be the same for the
new table as for the original table.

7. If either the entry-limit or the length specification is included in the declaration, both must
be included. If only one or the other specification is present, a serious diagnostic will be issued.

EXAMPLE: In the example in Figure 2−6, Table AAB duplicates Table AA. Note that Table AA is variable
in length and Table AAB is fixed in length; Table AA has 100 entries and Table AAB has only one entry;
Table AA IS 200 words long and Table AAB is 2 words long.

Original Table Statement New Table

TABLE AA V 100 $
BEGIN ITEM AAA F $

ITEM BBB I 16 U $
END

TABLE AAB R 1 L $ TABLE AAB R 1 $
BEGIN ITEM AAAB F $

ITEM BBBB I 16 U $
END

Note: The statements given to describe Table AAB do not actually appear in the program.

FIGURE 2−6.���DUPLICATED TABLE

2.3.6���Variable Length Table Entries

Programmer-allocated tables can contain variable-length entries if STRING statements are used in the
description of the entry format. Because the number of beads in the string is not specified in the STRING
statement, the number can vary from entry to entry under programmer control.

When the input is prepared or the table is built during execution, the programmer must provide means
of knowing the position of each entry in the table and the number of beads in each string in each entry.
The compiler does not provide bookkeeping, but merely accesses data in accordance with the item and
string declarations and indexes according to the word limit declared in the table statement. Appropriate
programmer control varies with circumstances because the number of beads per entry may be fixed may
be indicated by a specially coded terminating bead, or may be indicated by control items in the same
or related table.

EXAMPLE: Assume that a variable-length table of the form shown in Figure 2−7 is to be read into storage
from a peripheral device.

2−15NASP−9288−02H15 August 1995

STOCK

BINNO ITEM PARTA PARTB PARTC PARTD *** PARTN

36 0

37 3 050 060 070

38 6 051 152 153 154 ***

* * * * * * *** *

* * * * * * *** *

FIGURE 2−7.���INPUT INFORMATION

The following statements should be given to describe the table.

TABLE STOCK V2500 1 $

BEGIN

ITEM BINNO I 12 U 0 0 D $

ITEM ITUM I 6 U 0 12 D $

STRING PART I 6 U 1 0 D 1 5 $

END

ITUM is used as a control item to indicate the number of beads in String PART for an entry.

Figure 2−8 shows the structure of the first three logical entries in table STOCK. Because the number
of words per logical entry varies, the number of words per entry was given in the TABLE statement as
1 in order to make every word in the table accessible. There are six actual entries in the first three logical
entries of the table.

2−16 NASP−9288−02H 15 August 1995

Actual Entry 0

BINNO ITUM
36 0

0 11 12 17 18 31

Actual Entry 1

BINNO ITUM
37 3

0 11 12 17 18 31

Actual Entry 3

BINNO ITUM
38 6

0 11 12 17 18 31

Actual Entry 2

PART PART
050 070

0 11 12 17 18 31

PART
060

Actual Entry 4

PART PART
151 153

0 11 12 23 24 31

PART
152

Actual Entry 5

PART
...

0 31

5 6 17 18 29 30

PART
154

PART

5 6

Logical Entry 0

Logical Entry 1

Logical Entry 2

5 6

FIGURE 2−8.���VARIABLE−LENGTH TABLE ENTRIES

2−17NASP−9288−02H15 August 1995

2.3.7���Variable Structure Table Entries

In programmer-allocated tables, the structure of the entries can be variable. That is, the items in successive
entries can vary in name, size, field-format, etc. The programmer must provide some method of determining
what kind of items are in the entry he is processing.

When the input is prepared or the table is built during execution, the programmer must provide means
of knowing which items vary. The compiler does not provide bookkeeping but merely accesses the data
according to the item and table declaration. Appropriate control varies with circumstances because the
type of item may be indicated by control items in the same or a related table or by distinctive characteristics
of the item.

EXAMPLE: The following statements describe a table with variable structure entries. The item ACTYPE
(aircraft type) is used as a control item. When the value of ACTYPE is TRNS (transport), item 3 is TONAGE.
When the value of ACTYPE is PASS (passenger), item 3 is CAP (capacity).

TABLE DESCR R 4 1 2 $

BEGIN

ITEM ACTYPE H 4 0 0 N $

ITEM MAXALT I 7 U 1 0 D $

ITEM MAXSPD I 11 U 1 7 D $

ITEM TONAGE I 12 U 1 20 D $

ITEM CAP I 8 U 1 18 D $

END

If ACTYPE has a value of TRNS in entry 0 and a value of PASS in entry 1, Figure 2−9, shows the
structure of the first two entries of Table DESCR.

2−18 NASP−9288−02H 15 August 1995

Entry 0

ACTYPE
(Value is TRNS) MAXALT

0 31 0 17 18 316 7 19 20

MAXSPD TONAGE

Entry 1

ACTYPE
(Value is PASS) MAXALT

6 31 0 17 18 316 7 25 26

MAXSPD CAP

word 0 word 1

word 0 word 1

FIGURE 2−9.���VARIABLE−STRUCTURE TABLE ENTRIES

In compiler-allocated tables, the EQUATE statement can be used to form entries with variable structures.
An example is given in the discussion of the EQUATE statement.

2.3.8���Initial Values for Table Items

Initial values can be assigned to table items in compiler-allocated or programmer-allocated tables by placing
a list of constants for the item immediately after the ITEM statement. The list of constants is enclosed
in the BEGIN and END brackets. The first constant in the list is the initial value of the item in the
0th entry; the second, the initial value of the item in the 1st entry etc. Since the items are named and
the field formats are given, the values of the item can be changed during the program execution. The
constants must be permissible values for the field type specified. Figure 2−10 gives permissible constant
formats. Constant formats are explained in detail in Section 1, under �Data Types".

2−19NASP−9288−02H15 August 1995

Type of Constant Format

Integer
integer
integerE+n
integerEn

Floating-point

floating-point
floating-pointE+n
floating-pointEn
floating-pointE−n

Fixed-point

fixed-pointAm
fixed-pointAmEn
fixed-pointEnAm
fixed-pointAmE±n
fixed-pointE±nAm

Hexadecimal X(hexadecimal)

EBCDIC pH(EBCDIC-characters)

ASCII pC(ASCII-characters)

Explanation of format

integer 1 to 10 decimal digits, optional sign.

floating-point 1 to 8 decimal digits, explicit decimal point, optional sign.

fixed-point 1 to 9 decimal digits, explicit decimal point, optional sign.

hexadecimal 1 to 16 alphanumeric characters, no sign.

EBCDIC-characters 1 to 8 characters from complete EBCDIC character set.

ASCII-characters 1 to 8 characters from complete JOVIAL character set.

n Exponent. Integral power of 10 by which number is multi-
plied.

m
Binary point specification � Unsigned integer specifying
number of bits to right of binary point.

p
Positive number indicating maximum number of characters
in EBCDIC or ASCII constant.

FIGURE 2−10.���CONSTANT FORMATS

2−20 NASP−9288−02H 15 August 1995

EXAMPLE: The following statements assign initial values to the first item in each entry of the compiler
allocated table STPOP.

TABLE STPOP R 50 D $

BEGIN

ITEM STATE C 8 $

BEGIN 8C(ALABAMA) 8C(ALASKA)...END

END

2.4���ARRAY STATEMENT

An array is a data organization of one or more dimensions. The number of dimensions necessary is determined
by the number of reference points needed to uniquely locate a piece of information (element) in the data
organization.

One reference point is needed to located an element in a 1-dimensional array. For example, consider a
1-dimensional array formed by listing the letter A through Z. Then B is uniquely referred to by specifying
the second entry in the list.

Two reference points are needed to locate an element in a 2-dimensional array. For example, consider
a map of elevations. If a grid of horizontal and vertical lines is laid over the map so that one elevation
is recorded in each square of the grid, then any elevation can be uniquely referred to by specifying the
horizontal and vertical entries.

In a similar manner, in an n-dimensional array, n reference points are needed to uniquely locate an element.
In JOVIAL, all of the elements must have the same variable field format and a unique reference to an
element is made by subscripting the name of the array, one subscript for each dimension. Subscripting
is explained in Section 3 �Referring to Data".

An array is described with an array statement. The format of an ARRAY statement is:

ARRAY array-name d1 d2 ...dn field-format $

array-name Programmer-assigned symbolic name.

di Integer value representing the size of dimension.

field format Variable field format of elements in the array. Codes for field formats are given
in Figure 2−4.

RESTRICTIONS: The following restrictions apply to the ARRAY statement.

1. Only one variable field format is given for the entire array.

2. Status value fields are not permitted in arrays.

3. See Section 7, �DIRECT Code," for information on arrangement of elements in storage and
space required per element.

EXAMPLE: The following statement describes a 3-dimensional array which has 64 elements (floating-point
variable fields). The size of the first dimension is 8; the size of the second dimension is 4; the size of
the third dimension is 2.

ARRAY AA 8 4 2 F $

2−21NASP−9288−02H15 August 1995

2.5���EQUATE STATEMENT

The EQUATE statement permits two or more items, table, or arrays to share the same storage area.

There are three major varieties of EQUATE statement: Item Equate, Structure Equate, and Dynamic Equate.
The following paragraphs describe each of these.

2.5.1���Item Equate

The format of an Item Equate statement is:

EQUATE symbolic-name=symbolic-name
[=symbolic-name] ... $

symbolic-name Name of a single item or table item.

RESTRICTIONS: The following restrictions apply to Item Equates.

1. Single items may be equated only with other single items.

2. Fields of different data types can be equated. For example, a floating-point single item can be
equated to an EBCDIC single item.

3. Table items may be equated only with other table items in the same table. When table items
are equated, the EQUATE statement must precede the END bracket enclosing the item statements
describing the entry format.

4. Programmer-allocated table items must not be equated.

5. Strings must not be equated.

6. Parameter items must not be equated.

2.5.2���Structure Equate

The Structure Equate permits two or more tables (or arrays) to partially or totally overlay one another.
In the following description, the term �table" is intended to include arrays as well. The user need make
no distinction between the two as used in Structure (or Dynamic) Equates.

The format of a Structure Equate is as follows:

EQUATE series1=series2[=series3...] $

series i is tablei [,tablei2,...].

When several Structure Equates have common elements, they are considered to be logically part of the
same EQUATE, and they are processed together.

However, when a Structure Equate has a common element with a Dynamic Equate, it is considered �subordinate"
and the Dynamic Equate rules apply.

RESTRICTIONS: The following restrictions apply to structure equates that are not subordinate to dynamic
equates:

1. If tablei appears in more than one equate statement, it must be the only element of a series
(i.e., not preceded or followed by a comma) in all but the first occurrence.

2−22 NASP−9288−02H 15 August 1995

2. If a compool table appears in a structure equate, it must be alone in a series.

3. Tables whose initial values have been assigned must not be equated. This does not apply to
a compool table appearing in a program-defined EQUATE statement.

4. There can be, at most, one compool-defined table or array in a program-defined EQUATE statement.

5. If two or more Structure Equate EQUATE statements form a chain, e.g., EQUATE AA = BB
$ EQUATE BB = CC $, there can be, at most, one compool defined term in the entire program-defined
Structure Equate chain.

6. If one table or array in a Structure Equate statement is defined in the compool, the location
of the common storage area is in the compool-defined area.

7. The symbolic names used in the EQUATE statement must have been defined previously, and
must all be in the same region, or in compool.

8. In any single Structure Equate statement, a maximum of one element may have appeared in
a previous EQUATE.

2.5.3���Dynamic Equate

The Dynamic Equate allows the user to dynamically assign the location of a table or tables. Effectively,
the �form" of the table (or of any structure of tables which can be defined using Structure Equates) is
laid onto the storage area specified by the user.

The format of a Dynamic Equate is:

EQUATE item/series1 [=series2...] $

series i is as for structure equate

item must obey the following rules:

1. It must be a single item, table item, or procedure dummy item.

2. It must be I or A type, with at least 24 magnitude bit, and must be n-packed.

3. If it is a table item, the table containing it must be single entry, and must
not itself appear in a dynamic equate.

When a dynamic equate is defined, the value in the �base item" is not preset. It must be set by the user.
When a reference is made to a dynamic table (or its items), the word containing the base item is loaded
and the low-order 24 bits used as an address. If the value of the item is changed by name, the base register
will automatically be reset. Although the base item may be overlaid by item equates or table definition,
references to overlaying items will not cause the value of an in-use base to change. (See also Section 8,
Reload Pseudo-op.)

No storage will be allocated for an �internal" table which appears in a dynamic equate. Storage allocation
for compool tables is dependent on the presence of other references to the segment. However, the compool
table is, for all practical purposes, redefined internally. It is given an A1 or other local prefix, and the
original location is lost. To regain the original location requires the use of direct code, possibly including

a BAL format PSEG card image, or a . b/ PSEG card image, referencing the name of the segment or a
non-dynamically-equated table therein. The dynamic equate statement must precede any references to tables
(and their items) contained in it.

RESTRICTIONS: The following restrictions apply to Dynamic Equates and to subordinate Structure Equates.

2−23NASP−9288−02H15 August 1995

1. If tablei appears in more than one EQUATE statement, it must be the only element of a series
(i.e., not preceded or followed by a comma) in all but the first occurrence.

2. The symbolic names used in the EQUATE statement must have been defined previously, and
must all be in an accessible region, or in compool.

3. No table appearing in a Dynamic Equate may contain an item used as the base for a Dynamic
Equate (either itself or another Dynamic Equate).

4. No table may appear in more than one Dynamic Equate statement in a single program region.
A table in a Dynamic Equate may, however, appear in one or more subordinate Structure Equates.
A table may appear in a Dynamic Equate statement in the main program and also in Dynamic
Equate statements in procedures and/or functions.

5. In any single subordinate Structure Equate, only one element may have appeared previously
in a Dynamic Equate or subordinate Structure Equate.

6. No element in a Dynamic Equate may have appeared in any previous EQUATE; thus all subordinate
Structure Equates must follow their Dynamic Equate Statements.

7. The total size of a dynamic structure (defined by a Dynamic Equate, with its subordinate Structure
Equates, if any) must not exceed 65,536 bytes.

Example 1:

ITEM AA I 32 S $

ITEM BB R 20 40 $BEGIN END

ITEM CC R 4 6 $BEGIN END

ITEM DD R 6 4 $BEGIN END

ITEM EE R 10 20 $BEGIN END

ITEM FF R 20 36 $BEGIN END

EQUATE AA/BB=CC,DD $
EQUATE DD=EE,FF $

Resulting structure (no storage actually allocated):

BB

CC DD

EE FF

2−24 NASP−9288−02H 15 August 1995

Example 2:

In the following example, ACTUAL and EST (estimate) occupy the same word in an entry. If the field
is referred to as ACTUAL, it is treated as floating-point; if it is referred to as EST, it is treated as an
integer.

TABLE MANY V1000 $

BEGIN

ITEM ACTUAL F $

ITEM EST I 10 S $

ITEM CODE H 6 $

EQUATE EST = ACTUAL $

END

3−1NASP−9288−02H15 August 1995

3.0 REFERRING TO DATA

3.1���SUBSCRIPTS

Single items can be referenced in operative statements by the name assigned to the item in the data declaration
statement. Subscripts must be appended to data names to refer to items in tables, entries in tables, beads
of a string, and elements of arrays. A subscript consists of one or more subscript expressions, separated
by commas.

Subscripts are surrounded by dollar signs, and enclosed in parentheses, ($...$). There may be no blanks
between the dollar sign and parentheses.

3.1.1���Subscript Expressions

Subscript expressions may be single items, constants, or arithmetic expressions. Because subscript expressions
specify the number of the occurrence of the table item, table entry, bead, or array element (first occurrence,
fifth occurrence, etc.), the subscript expression must be a positive integer. If the subscript expression contains
a fractional part, it is truncated. All subscript expressions are used modulo 224.

3.1.2���Reference to Table Items

Individual items in a table can be referenced by specifying the name of the item, followed by a subscript
expression indicating the number of the entry. The format of a subscripted table item name is:

table-item-name ($ subscript $)

Table-item-name Programmer-assigned item name of ITEM statement associated with a compiler-allo-
cated or programmer-allocated TABLE statement.

subscript Subscript expression specifying the number of the entry that contains the table
item. Entry numbering starts with 0. A subscript of 0 [e.g., table-item-name
(0] need not be used, since an unsubscripted table item name refers to the
table item in entry 0.

EXAMPLE: In the following example, a subscript is used to refer to the fourth occurrence of Item POP
in Table STPOP.

Statement Comments

TABLE STPOP 50 D $ Table statement.

BEGIN

ITEM STATE C 8 $ Item statement.

ITEM POP F $ Item statement.

END

IF POP ($ 3 $) GR 100000 $ Refers to Item POP in the fourth state.

3−2 NASP−9288−02H 15 August 1995

Statement Comments

GOTO LARGE $ True exit. Transfer to statement labeled LARGE.

GOTO SMALL $ False exit. Transfer to statement labeled SMALL.

3.1.3���Reference to Beads in a String

A bead in a string must be referenced by specifying the name of the string, followed by subscripts indicating
the number of entry and the number of the bead in the entry. The format of a subscripted string name
is:

string-name ($ bead, entry $)

string-name Symbolic name of the string.

bead A subscript expression specifying the number of the bead in the entry. Bead
numbering starts with 0.

entry A subscript expression specifying the number of the entry in the table. Entry
numbering starts with 0.

The expression CC($0, 2$) refers to the first bead in third entry of a table containing String CC. Use
of the subscripts is mandatory.

3.1.4���Reference to Elements in an Array

An element in an array must be referenced by specifying the array name, followed by subscripts indicating
the location of the element in each dimension of the array. The format of a subscripted array name is:

array-name ($S1, S2...Sn $)

array-name Symbolic name of the array.

Si Subscript expression referring to dimension i. The number of subscript expressions
specified must equal the number of dimensions. If the size of dimension Si is
n, the value of the subscript expression referring to dimension i can range from
0 through n-1.

Use of an array name without subscripts is treated as a �Table Address Constant" (See Section 1).

EXAMPLE: The following example shows a statement used to describe an array and the subscripts used
to refer to items in the array. In the illustration, dimension 1 is vertical; dimension 2 is horizontal.

3−3NASP−9288−02H15 August 1995

AA($0,0$)

AA($1,0$)

AA($2,0$)

AA($3,0$)

AA($0,1$)

AA($1,1$)

AA($2,1$)

AA($3,1$)

AA($0,2$)

AA($1,2$)

AA($2,2$)

AA($3,2$)

ARRAY AA 4 3 I 32 U $
Dimension 2

D
i

m
e
n
s
i
o
n

1

In Section 5, under �FOR Statement" there is an example of a FOR statement used to process an array.

3.2���MODIFIERS

Modifiers are used to obtain special kinds of information about data. The following list gives the types
of modifiers and their purpose.

Modifier Purpose

BIT Refer to specific bits in an item.

BYTE Refer to specific bytes in an item.

ENT Refer to a table entry.

NENT Refer to number of entries in a table.

NWDSEN Refer to number of computer words in a table entry.

ALL is an additional modifier that is used only in FOR statements (see Section 5, under �FOR Statement").

Information about the modifier is enclosed in parentheses and follows the name of the modifier.

3.2.1���BIT Modifier

BIT modifiers are used to refer to specified bits in a single item, table item, array element, or bead of
a string. They can be used in arithmetic expressions, IF, and Assignment statements. When this option
is used, the bits are treated as a group of unsigned integer bits. The format of a BIT modifier is:

BIT ($ first-bit[,total-bits] $)
(symbolic-name)

first-bit A subscript expression specifying the first bit referenced. When the total-bits
field is omitted, the reference is only to this one bit. Numbering begins with
0. If the item is signed, 0 refers to the sign bit.

3−4 NASP−9288−02H 15 August 1995

total-bits A subscript expression specifying the total number of bits referenced.

symbolic-name Name of single item, table item, array, or string, subscripted if necessary.

EXAMPLE: In the following example, an ITEM statement describes the integer Item ROUTE, and a BIT
modifier is used with IF and GOTO operative statements to determine whether the value of ROUTE is
odd or even.

ITEM ROUTE I 6 U $
IF BIT (5) (ROUTE) EQ 1 $
GOTO ODD $
GOTO EVEN $

1. The last bit is referenced as bit number 5 because numbering begins with 0.

2. The first statement after an IF is the true exit; the second is the false exit.

3.2.2���BYTE Modifier

BYTE modifiers are used to refer to specified bytes of a single item, table item, array element, or bead
of a string. They can be used in arithmetic expressions and IF and Assignment statements. When this
option is used, the bytes are treated as a group of unsigned integer bits. The format of a BYTE modifier
is:

BYTE ($ first-byte[, total-bytes] $
(symbolic-name)

first-byte A subscript expression specifying the first byte referenced. This is the only byte
used if the total-bytes field is omitted. Numbering begins with 0.

total-bytes A subscript expression specifying the total number of bytes referenced.

symbolic-name Name of single item, table item, array, or string, subscripted if necessary.

EXAMPLE: In the following example, an ITEM statement describes the EBCDIC Item TYPE, and a BYTE
modifier is used with IF and GOTO operative statements to determine whether the value of TYPE is
SAMPLE.

ITEM TYPE H 8 S

IF BYTE ($2,6$) (TYPE)EQ 6H(SAMPLE) $

GOTO SHOW $

GOTO CALC $

3.2.3���ENT Modifier

The ENT (entry) modifier is used to set an entry of a table to zero, to the value of another entry, or
to exchange entries.

The format of the ENT modifier used to set an entry or table item to zero is:

ENT(symbolic-name($ subscript $))=0 $

3−5NASP−9288−02H15 August 1995

The format of the ENT modifier used to set an entry to the value of another entry is:

ENT(symbolic-name($ subscript $)) = ENT(symbolic-name($ subscript $))$

The format of the ENT modifier used to exchange entries is:

ENT(symbolic-name($ subscript $)) = = ENT(symbolic-name($ subscript $))$

symbolic-name Name of a table or a table item or string within the table.

subscript Subscript expression specifying the number of the entry in the table.

RESTRICTIONS: The following restrictions apply to ENT modifiers.

1. If the name of a table item or string is given, the effect is the same as if the name of the
table containing the item or string were given, i.e., the complete entry is affected.

2. The three uses given for the ENT modifier are the only ways it can be used; an ENT modifier
cannot appear in any other statement.

3. A table entry may only be set from or exchanged with a table entry of equal size.

3.2.4���NENT Modifier

The NENT (number of entries) modifier is a predefined name used to refer to the number of entries
in a table. For fixed length tables it is set to the number of entries declared and, like a parameter item,
cannot be changed. For variable length tables NENT is a special variable with the implied field description
I 24 U. It is initially set to zero by the compiler, and may be altered as well as referenced by the programmer.

The format of the NENT modifier is:

NENT(symbolic-name)

symbolic-name Name of table item, string, or table.

RESTRICTIONS: The following restrictions apply to the NENT modifier.

1. If the name of a table item or string is given, the reference is to the table containing the table
item or string.

2. NENT modifiers can be used in arithmetic expression.

EXAMPLE: In the following example, TABLE and ITEM statements describe two tables; ENT modifiers
manipulate the entries in the tables, and the NENT modifier tests the number of entries in the tables.

Statement Comments

TABLE TABA V 20 N $ Variable-length, 20 entries, fullword packed.

BEGIN Bracket.

3−6 NASP−9288−02H 15 August 1995

Statement Comments

ITEM ONEA H 4 $ 4-character EBCDIC field.

ITEM TWOA 32 3 S $ 32-bit signed fixed-point field.

END Bracket.

Statement Comments

TABLE TABA V 30 N $ Variable-length, 30 entries, fullword packed.

BEGIN Bracket.

ITEM ONEB F $ Floating-point field.

ITEM TWOB I 32 S $ 32-bit signed integer field.

END Bracket.

.

.

.

IF NENT (TABA) EQ 20 $ Number of entries in TABA equal to 20?

GOTO ROUT $ True. Go to statement labeled ROUT.

ENT(TABA(3)) = 0 $ False. Set entry 3 of TABA to zero.

ENT(ONEA(3)) =
ENT(TABA(4)) $

Replace entry 3 of TABA containing (ONEA) with entry 4 of
TABA.

ENT(ONEA(2)) = =
ENT(TWOB(4)) $

Exchange the words in entry 2 of TABA with the corresponding
words in entry 4 of TABB.

3.2.5���NWDSEN Modifier

The NWDSEN (number of words per entry) modifier is a predefined name of an integer constant referring
to the number of computer words occupied by a table entry. It is assigned by the compiler for compiler-allocated
tables and is determined by the compiler from TABLE statements for programmer-allocated tables. It can
be used anywhere a constant may be used in executable statements.

The format of a NWDSEN modifier is:

NWDSEN (symbolic-name)

symbolic-name Name of table or table item or string within the table.

RESTRICTIONS: The following restrictions apply to the NWDSEN modifier.

3−7NASP−9288−02H15 August 1995

1. If a table item name or string name is given instead of a table name, the reference is to the
table containing the table item or string.

2. NWDSEN cannot be modified during program execution; it represents a constant.

EXAMPLE: In the following example, the total number of words in a table is determined by multiplying
the number of entries by the number of words in each entry.

ITEM TOTAL F $
TABLE TABL R 60 N $
BEGIN
ITEM ITEMA F $ ITEM ITEMB F $
END
TOTAL = NENT(TABL)*NWDSEN(TABL)$

3.2.6���LOC Modifier

The LOC (locate address) modifier refers to the location of a table, array, string, or item. LOC is particularly
useful because table names must often be referenced with a displacement. The LOC modifier may be used
anywhere a constant may be used.

The format of the LOC modifier is:

LOC (symbolic-name)

symbolic-name Name of table, array, string, or item.

RESTRICTIONS: The following restrictions apply to the use of the LOC modifier.

1. Only a table, array, string, or item name is acceptable in the �symbolic-name" field. Table names
may not be subscripted; string names must be subscripted.

2. LOC cannot be modified during program execution; it represents a constant.

3. In the case of an item name, the value is the address of the word (or halfword, if M-packed)
containing the item.

4. The use of LOC (string) is restricted to locating the first bead within an entry. Any valid entry
subscript may be used. The bead subscript should be coded as zero. A non-zero bead subscript
will be ignored, or, in the case of some dense-packed strings, will result in a diagnostic.

5. In order to process LOC correctly, the compiler requires an entry in the Library PDT for function
ZVLOC.

EXAMPLE: The following example shows the MVI Library Routine used to move data into the 10th byte
of Table DATA.

MVI (LOC(DATA) + 10, 4, 4H(ABCD))$

3.2.7���ADR Modifier

The ADR (address) modifier is identical to the LOC modifier except for items and strings with B or D
packing. These return byte addresses. For D-packed multi-byte items, the address is of the byte containing
the first bit of the item.

The format of the ADR modifier is:

3−8 NASP−9288−02H 15 August 1995

ADR (symbolic-name)

symbolic-name as for LOC.

RESTRICTIONS: The following restrictions apply to the use of the ADR modifier:

1. Restrictions 1, 2, and 4 under LOC also apply to ADR.

2. In order to process ADR correctly, the compiler requires an entry in the Library PDT for function
ZVADR.

4−1NASP−9288−02H15 August 1995

4.0 ARITHMETIC EXPRESSIONS

4.1���ARITHMETIC OPERANDS AND OPERATORS

An arithmetic expression consists of a single constant or variable, or two or more constants and variables,
joined by arithmetic operators. Arithmetic expressions can be used as subscripts or as arguments of BIT
and BYTE modifiers. They can also be used in the Assignment, IF, FOR, and GOTO operative statements.

The kinds of terms that can be used in an arithmetic expression are:

1. Single item name.

2. Subscripted table item name.

3. Subscripted string name.

4. Subscripted array name.

5. BIT or BYTE modifiers.

6. NENT or NWDSEN modifiers.

7. Index name.

8. Constants.

9. LOC or ADR modifiers.

10. Function calls.

Integer, fixed-point, floating-point, EBCDIC, ASCII, and hexadecimal constants can be used in arithmetic
expressions. Status value constants can be used only as single term expressions and then only in Assignment
and if statements in conjunction with their associated status value variable.

Listed below are the JOVIAL arithmetic operators.

Operator Use

+ Addition

− Subtraction

* Multiplication

/ Division

(*...*) Exponentiation

ABS(...) Absolute Value

RESTRICTIONS: The following restrictions apply to the use of arithmetic operators in arithmetic expressions.

4−2 NASP−9288−02H 15 August 1995

1. Contiguous operators are not permitted. For example, + − 3 must be written as +(−3).

2. Implied multiplication is not permitted. For example, (XX) (YY) must be written as XX * YY
or (XX) * (YY).

3. In exponentiation, if the base is negative, the exponent must be an integer. If the exponent
has a fractional part (either fixed-point or floating-point), the base must be positive; the result
is a floating-point number. EBCDIC and ASCII data are not permitted in an exponent.

EXAMPLES: The following examples illustrate the use of arithmetic operators.

1. Following is a list of legal arithmetic expressions in JOVIAL.

II+2 2 * KK − 6

XX − YY (MA *NA) / 2

AVAL / 2.0 ABS (MA * NA) / 2

AB (* 2 *) 2.0 * (U1+V1)

BB * CC ABS (MA)

2. Following is a list of illegal arithmetic expressions.

Illegal Expression Reason

− + AB + BB Contiguous operators. Rewrite
as −(+AB)+BB.

XX* − YY Contiguous operators. Rewrite
as XX* (−YY) or as −YY * XX.

(AB + BC) (EF +GH) Implied multiplication. Rewrite
(AB + BC)*(EF + GH).

3. Following is a list of exponents written in JOVIAL notation.

Conventional Exponentiation JOVIAL Exponentiation

AA3 AA(*3*)

BB−3 BA(*−3*)

CA CB*CC CA(*CB*CC*)

DA�DB�DC DA(*DB(*DC*)*)

EA�EB�EC��ED � 3.0�EE EA(*EB(*EC+ED*)*)+3.0(*EE*)

(GA + GB)2 (GA+GB) (*2*)

4.2���RULES OF PRECEDENCE

The order in which arithmetic operations are to be performed can be indicated by parentheses. If parentheses
are nested, the innermost parentheses are evaluated first.

4−3NASP−9288−02H15 August 1995

The following examples show how parenthesized expressions are evaluated.

Example 1:

3*(2+5)*(8/2)
=3*7*4
=84

Example 2:

3+(4*(7+8))+2
=3+(4*15)+2
=3+60+2
=65

When the precedence is not indicated by parentheses, the order is as follows:

First exponentiation, then multiplication and division, and addition and subtraction last.

The following example shows the evaluation of an expression not in parentheses.

Example 3:

2+10/5+3(*2(*2*)*)*4−6
=2+10/5+3(*4*)*4−6
=2+10/5+81*4−6
=2+2+324−6
=322

The following two examples show how parentheses affect exponentiation. In example 4, parentheses are
not used, so exponentiation is evaluated from right to left. In example 5, parentheses indicate that the
exponentiation is to be performed from left to right.

Example 4:

2(*2(*3*)*)
=2(*8*)
=246

Example 5:

(2(*2*))(*3*)
=4(*3*)
=64

Items on the same level are normally evaluated from left to right. However, right to left evaluation can
occur, especially if function calls are involved. The following example shows a case where an incorrect
answer can occur because the right-hand function call is performed before the left-hand call, and the null
arguments therefore do not contain the expected values.

Example 6:

If CLCI(ADDR,4,4H(ABCD))*CLCI(,,4H(EFGH))EQ 0 $

4.1.2���Mixing Types of Data

Although it is more efficient to use only one type of data in an expression, integer, fixed-point, and/or
floating-point data can be mixed.

4−4 NASP−9288−02H 15 August 1995

Figure 4−1 shows the types of data obtained when types are mixed in an expression. Since only one operation
at a time is performed, only two possible types of data can be involved at the same time.

Data Types Involved Operators Type of Result

integer and integer +−* integer

integer and integer / fixed-point

integer and fixed-point +−*/ fixed-point

integer and floating-point +−*/ floating-point

fixed-point and fixed-point +−*/ fixed-point

fixed-point and floating-point +−*/ floating-point

floating-point and floating-point +−*/ floating-point

FIGURE 4−1.���RESULT OF MIXING DATA TYPES

RESTRICTIONS: The following restrictions apply to arithmetic expressions containing different types of
data.

1. ASCII and EBCDIC data are not permitted in expressions containing floating-point data and
are treated as unsigned integer data in expressions containing integer and fixed-point data.

2. When EBCDIC or ASCII data is used in addition or subtraction with unsigned data, logical
arithmetic is performed.

3. When EBCDIC or ASCII data is used in addition or subtraction with signed data, the low-order
four bytes are used with the high-order bit treated as the sign.

4. When EBCDIC or ASCII data is used in multiplication or division, the four low-order bytes
are used with the high-order bit treated as the sign.

NOTE

When fixed point and integer data are mixed, grouping the A-type items with
parentheses will preserve fractional accuracy.

EXAMPLES: In the following examples, showing the result obtained when data types are mixed in an
expression, RED is an integer item, YELLOW is a fixed-point, and BLUE is a floating-point item.

Expression Type

YELLOW * BLUE floating-point

RED + 10 integer

BLUE/ 2 *RED floating-point

RED/ 2 − RED fixed-point

4−5NASP−9288−02H15 August 1995

Expression Type

YELLOW/ 10.5A1 fixed-point

(YELLOW + RED) /3.0 floating-point

RED(*2*) * 100 integer

RED − YELLOW fixed-point

BLUE/YELLOW + RED floating-point

The following are general statements about the type of result obtained from an arithmetic expression containing
different types of data.

1. If the expression contains any floating-point data, the result will be floating-point.

2. If the expression contains only integer data, and no division is involved, the result will be integer.

3. If the expression contains only fixed-point data, fixed-point and integer data, or only integer
data and division is involved, the result will be fixed-point.

4.3���ALIGNMENT

Alignment is automatically supplied when arithmetic operations are performed.

If a result is too large to fit into an integer field, it is truncated.

A floating-point number must not exceed the limits 5 * 10−79 and 7 * 1075. It is the programmer’s responsibility
to ensure that the limits are not exceeded.

If a result is too large to fit into a fixed-point field, it is truncated according to the following rules:

1. In addition or subtraction, the fractional bits are truncated before the operation is performed,
in order to preserve integer bits. The effect of truncating fractional bits is to always bring the
result closer to zero.

2. In multiplication, the number of bits allowed for the product is 31 bits plus a sign bit. The
first thing done is to sum the integer bits for the multiplier with the integer bits for the multiplicand.
If this sum is 31 or greater, all fraction bits are truncated. Truncation occurs on the high order
bits if the sum is greater than 31. If the sum is less than 31, the number of bits remaining
can be used for the fraction.

3. In fixed-point division, scaling depends on the scale and size of the dividend, divisor, and quotient:

a. If the quotient destination is an explicitly defined non-floating point field, scaling will conform
to the definition of the quotient.

b. Otherwise (e.g., the quotient is an intermediate result), the integer portion of the quotient
will be the number of integer bits in the dividend plus the number of fractional bits in
the divisor. This assignment allows for the largest possible integer result. If this is greater
than 31 magnitude bits, high-order bits are truncated and a warning diagnostic is issued.
If this assignment is less than 31 magnitude bits, remaining will be used for fractions.

Examples:

ITEM AA A 10 S �5 $
ITEM BB A 15 S �5 $
ITEM CC A 32 S 25 $
ITEM XX

AA = AA + BB/CC $

4−6 NASP−9288−02H 15 August 1995

Here the quotient is an intermediate result; there are 9 integer bits in the dividend and 25 fractional
bits in the divisor. 9 + 25 = 34 > 31. The warning is issued, and only 31 bits are retained.

CC = CC − AA/BB $

The quotient is again intermediate; there are four integer bits in the dividend and five fractional bits
in the divisor. 4 + 5 = 9 < 31. The remaining 22 bits are fractional.

When the dividend is the product of fixed point multiplication, its size and scale are the sum of the sizes
and scales of the multiplicand.

Example:

CC = (CC * AA)/BB + XX $

Here there are 6 + 4 = 10 integer bits in the dividend (25 + 5 = 30 fractional bits) and 5 fractional
bits in the divisor. 10 + 5 = 15 < 31. The remaining 16 bits are fractional.

4. To preserve fractional bit accuracy in mixed fixed point and integer arithmetic, the fixed point
constants or items should be grouped together by means of parentheses.

5−1NASP−9288−02H15 August 1995

5.0 OPERATIVE STATEMENTS

Figure 5−1 summarizes the purpose of JOVIAL operative statements. The START control statement is
included in the list since it is required in each JOVIAL program and, unlike other control statements,
it is recognized only by the JOVIAL compiler. The statements are separated into categories according to
their function: control information, data manipulation, logical operations, sequence control, defined procedures,
and direct code. The GOTO and STOP statements appear in two categories (sequence control and defined
procedures) because they have two functions.

5−2 NASP−9288−02H 15 August 1995

Category Statement Purpose

Control Information
(control statement)

START
(control statement)

Indicates the type of program and identifies
the compool.

TERM Indicates the end of the program.

Data Manipulation Assignment Sets a variable equal to the value of another
variable, a constant, or an arithmetic expres-
sion.

Exchange Exchanges the values of two items or table
entries.

REMQUO Performs integer division; produces quotient
and a real remainder.

Logical Operations IF Evaluates a condition to determine whether
it is true or false.

IFEITH/ORIF Evaluates a series of alternative conditions.

Sequence Control FOR Permits controlled repeated execution of an
operative statement.

TEST Causes a transfer to the end of the statement
under control of a FOR statement.

GOTO Twofold−(1) Causes a transfer within a pro-
gram to a specified label. (2) Tests a switch.

STOP Interrupts program execution.

Defined Procedures PROC Identifies the beginning of a function or proce-
dure.

CLOSE Identifies the beginning of a closed compound
procedure.

Call Calls procedures.

GOTO Calls closed programs and closed compound
procedures.

RETURN Causes a return to the calling program from
within a function, procedure, or closed com-
pound procedure.

STOP Twofold−(1) Causes a return to the calling
program from a closed program. (2) Relin-
quishes control to the monitor in a main
program.

Direct Code ASSIGN Permits a direct code reference to JOVIAL-de-
fined data.

FIGURE 5−1.���PURPOSE OF OPERATIVE STATEMENTS

5−3NASP−9288−02H15 August 1995

5.1���STATEMENT LABELS

The statement label provides a means of branching to a given statement from some other point in the
program. The statement label is coded according to the same rules as a data definition. The label must
be immediately followed by a period (.), and must precede the statement to which it applies. Most operative
statements can be labelled.

Any reference to a statement label may include the period. Where it is clear what is meant, as in a GOTO,
the period may be omitted. If there is any ambiguity, it must be included.

5.2���CONTROL INFORMATION

The START control statement must be the first statement in any JOVIAL program. It provides control
information to the compiler. The TERM statement must be the last statement in any JOVIAL program.

5.2.1���START Control Statement

The START control statement provides information for controlling a JOVIAL program. It specifies the
type of program, indicates which compool, if any, is to be used, specifies whether an object program is
to be produced in spite of serious errors, and gives the load address of the program.

The format of the START control statement is:

START CLOSE symbolic-name
LIBE

�/�n
REENT symbolic-name

LINKABLE +m

BLKDATA symbolic-name
symbolic name

�[POOL [‘compool-id]]�[ASSEMBLE]
�[load-address] [remarks]

CLOSE symbolic-name Program is compiled as a closed program identified by a symbolic name.

LIBE symbolic-name Program is compiled as a library routine identified by a symbolic name.

LINKABL
symbolic-name As �LIBE" but called by NAS SVC 104. (See NAS Monitor Handbook.)

REENT If present, indicates that the program is to be compiled as a re-entrant routine.

/n If present, with n = 1, 2, or 4, this indicates that the re-entrant storage requirement
for the program will be �padded" by a factor of n/16 (rounded up to the next

fullword boundary). n = 0 or b/ has no effect, but may be coded here for compatibility
purposes.

+m If present, with m = 0 to 99, the reentrant storage requirement for the program

is �padded" by 8m bytes. Use of + b/ is permitted but has no effect.

BLKDATA If present, indicates that the program is to be compiled as a Block-Data routine.

symbolic-name Program is compiled as a main program identified by a symbolic name of 2−6
characters.

5−4 NASP−9288−02H 15 August 1995

If none of these options is given, the program is compiled as a main program and has no identifying
name.

POOL ‘compool-id Indicates that the requested compool is to be used. A single quote-mark separates
POOL from compool-id, and no blanks are permitted within the combined field.
See restriction 6.

ASSEMBLE Indicates that an attempt is to be made to produce an object program in spite
of errors of serious severity. This option is treated in more detail in Section
9 under �Compiler Diagnostics."

WARNING

This option should be avoided unless absolutely necessary, as its use may cause the
Compiler to execute a SYSDUMP.

load-address Indicates the starting location for loading the object program. It may be specified
in either decimal or hexadecimal values. If decimal, format is an integer from
1 through 8 digits. If hexadecimal, format is X‘n’ where n represents 1 through
6 hexadecimal digits. If the load address is omitted, the loader determines the
location of the object program.

remarks Descriptive information that has no effect on the compilation.

RESTRICTIONS: The following restrictions apply to the use of the START statement:

1. The fields in the START statement must appear in the order given and must be separated by
at least one blank.

2. The fields must be contained within columns 1 through 66. There is no required column for
the beginning of each field.

3. The START statement must be the first statement in any JOVIAL program, or a message indicating
a serious error will be given.

4. No JOVIAL statement can appear on the START statement.

5. The difference between main programs, closed programs, Block-Data Programs, and library routines
is explained in Section 6, �Defined Procedures."

6. Under MVS, the ‘compool-id may be omitted and just POOL coded. However, if the ‘compool-id
is included, it must match the low-order portion of the DSN on the CMPTAB DD statement.
A mismatch will be considered a serious (or worse) error.

7. Instructions for creating and maintaining compools, explanations of control statement, and explana-
tions of error messages are given in the IBM Data Processing System: Compool Edit User’s
Manual (CMPEDT). MVS compools are covered in Section 10, JOVIAL Procedures.

8. The only fields on the START statement which are checked for validity are the symbolic-name
field after the CLOSE, LIBE, or BLKDATA option, if one of these options is selected, and the
Compool-ID field after POOL, if the option is selected. If any other field is encountered which
cannot be classified, it is considered to be the beginning of the �remarks" field. No further
checking on the START statement is done and no diagnostic is produced.

5.2.2���TERM Statement

The TERM statement identifies the end of a JOVIAL program and indicates where program execution
is to begin. The format of a TERM statement is:

5−5NASP−9288−02H15 August 1995

TERM[statement-label] $

statement-label Label of the statement in the program with which execution is to begin. If this
field is omitted, execution begins with the first operative statement.

RESTRICTIONS: The following restriction applies to the TERM statement.

A statement label in a TERM statement is permissible only in main programs.

5.3���DATA MANIPULATION

Data manipulation statements alter data or the arrangement of data. The three data manipulation statements
are Assignment, Exchange, and REMQUO.

5.3.1���Assignment Statement

The Assignment statement is used to set a field to the value of an arithmetic expression.

The format of the Assignment statement is:

left-term = arithmetic-expression $

left-term Any single variable of type 1 through 4 described in the section �Arithmetic
Expressions," any such variable modified by BIT or BYTE, or a valid use of
NENT or ENT modifiers.

arithmetic expression An arithmetic expression.

RESTRICTIONS: The following restrictions apply to the use of the Assignment statement.

1. Data is stored in conformity with the description of the receiving field.

2. Decimal point alignment and truncation are performed, if necessary.

3. If EBCDIC or ASCII data is stored in a signed field and a 1-bit is moved into the sign position,
subsequent references to the signed item will consider it to be a negative value.

4. When data is stored in an EBCDIC or ASCII doubleword field, the low-order 32 bits are put
in the second word and the high-order bits are right-justified in the first word, preceded by
leading zeros if necessary.

5. Caution should be exercised when the source and destination of an assignment statement are
overlapping byte-aligned fields, with the destination to the right of the source. An MVC instruction
may be generated which will �propagate" leading (non-overlapped) bytes of the source into the
entire destination field. For example:

TABLE TT R 1 2 $

BEGIN

ITEM HH1 H 6 0 0 D $

ITEM HH2 H 6 0 16 D $

END

H1 = 6H(ABCDEF) $

H2 = HH1 $

5−6 NASP−9288−02H 15 August 1995

will result in A�B�A�B�A�B�A�B�, not in�A�B�A�B�C�D�E�F�. If this problem occurs,
define an intermediate temporary item and code:

temp = source $
destination = temp $

EXAMPLES: The following examples show the uses of the Assignment statement.

Assume the following data declarations are given:

ITEM COLOR $ V(RED) V(YELLOW) V(BLUE) $
ITEM AAA I 32 U $

TABLE CONV R 30 N $

BEGIN
ITEM FFF F $
ITEM III I 32 U $

BEGIN 60 45 271 34 1278 ...END
END

Then the Assignment statement can be used for the following purposes.

1. To set an item to a constant value.

Statement Comments

AAA = 29$ The value of Integer item AAA becomes 29.

FFF(AAA)=36.5 $ Item FFF in the last entry of Table CONV is set to
36.5.

COLOR=V(YELLOW)$ Item COLOR is set to 1. This is the only way a status
value constant can appear in an Assignment statement.

2. To set an item to an arithmetic expression.

Statement Comments

AAA = AAA − 1 $ The value of Item AAA is decremented from 29 to
28.

FFF(AAA) =
III(AAA)*.60 $

Item FFF in the next to the last entry of Table CONV
is set to .60 times the value of Items III in the same
entry.

3. To perform data conversion.

Statement Comments

FFF(0)= III(0) $ The integer 60 in Item III in the first entry of Table
CONV is moved to Item FFF in the same entry and
assumes the form of the floating-point number, 60.0.

5−7NASP−9288−02H15 August 1995

5.3.2���Exchange Statement

The Exchange statement is used to exchange the values of two fields. It may also be used to exchange
two table entries (for this second case, see Section 3, ENT modifier). The format of the Exchange statement
is:

symbolic-name == symbolic-name $

symbolic-name symbolic name of a single item, a table item, or an array element, subscripted
if necessary.

RESTRICTIONS: The following restrictions apply to the use of the Exchange statement.

1. The data assumes the form of the receiving field.

2. Decimal point alignment and truncation are performed if necessary.

3. BIT and BYTE modifiers may not be used.

4. A blank must not be used between the two equal signs that form the exchange symbol.

EXAMPLE: In the following example of the use of the Exchange statement, the values of AAA and BBB
are exchanged.

ITEM AAA F $

ITEM BBB I 32 S $

AAA == BBB $

The following list shows the effect of the Exchange statement on different possible values of AAA and
BBB.

Before Exchange After Exchange

AAA BBB AAA BBB

20. 30 �30. 20

36.54 �2781 �2781. 37

.4 42 �42. �0

5.3.3���REMQUO Statement

The REMQUO (remainder-quotient) statement is used to perform integer division and provide a quotient
and a real remainder. The format of the REMQUO statement is:

REMQUO (dividend, divisor = quotient, remainder) $

dividend An expression that is to be divided.

5−8 NASP−9288−02H 15 August 1995

divisor An expression that divides.

quotient A variable that is the quotient of division.

remainder A variable that is the remainder of the division.

RESTRICTIONS: The following restrictions apply to the REMQUO statement.

1. The quotient will have the appropriate algebraic sign. The remainder will have the sign of the
dividend.

2. No parameters may be omitted.

EXAMPLE: The following example shows the use of the REMQUO statement.

ITEM DVDND I 32 S $

ITEM DVSR I 32 S $

ITEM QUOT I 32 S $

ITEM RMDR I 32 S $

REMQUO (DVDND, DVSR = QUOT, REMDR) $

The following list gives the quotient and remainder resulting from possible dividends and divisors.

DVND DVSR QUOT RMDR

+38 −4 −9 +2

+7 +7 +1 +0

−16 +3 −5 −1

5.4���LOGICAL OPERATIONS

The IF statement is used to specify logical operations. It causes a condition to be evaluated to determine
whether it is true or false. The condition is true or false depending upon the value of the expressions
when the IF statement is executed.

5.4.1���IF Statement

The IF statement tests a simple or complex condition. When the condition is true, the first operative
statement following the IF statement is executed. When the condition is false, the second operative statement
after the IF statement is executed. The first statement following the IF statement may be simple or compound.
A simple statement is a single operative statement. A compound statement is a series of operative statements
enclosed in BEGIN−END brackets.

The format of an IF statement is:

IF simple-condition $
����complex-condition

simple-condition Two expressions joined by a relational operator (see �Conditions", following).

5−9NASP−9288−02H15 August 1995

complex-condition Two simple or complex conditions joined by a logical operator (see �Conditions").

RESTRICTIONS: The following restrictions apply to the use of the IF statement.

1. If a compound statement follows an IF statement, the last statement in the compound statement
(the statement immediately preceding the END bracket) cannot be an IF statement.

2. Compound statements can be nested.

3. If a compound statement is labeled, the label can precede or follow the BEGIN bracket. Statements
within compound statements can be labeled.

4. A FOR statement cannot be the first statement after the IF statement (the true exit) unless
the FOR is in a compound statement.

5. A CLOSE or PROC statement cannot be the first or second statement after the IF statement
(true or false exit).

5.4.1.1���Conditions.���An IF statement can evaluate either simple or complex conditions.

1. A simple condition has the form:

expression relational-operator expression

expression Arithmetic expression.

relational-operator One of the following:

EQ equal to
=
NQ not equal to
GR greater than
GQ greater than or equal to
LS less than
LQ less than or equal to

2. A complex condition has the form:

simple-condition�
logical-operator

complex-condition

simple-condition�

complex-condition

simple-condition A simple condition.

complex-condition A complex condition.

logical-operator One of the following:

AND If both conditions are true, the condition is true; otherwise it is false.

5−10 NASP−9288−02H 15 August 1995

OR If neither condition is true, the condition is false; otherwise it is true.

RESTRICTIONS: The following restrictions apply to conditions in an IF statement.

1. If a status value variable is compared to one of its status value constants, the collating sequence
depends on the item statement defining the status variable, because status value constants are
assigned the values 0, 1, 2,... in the order of their appearance in the item statement defining
the status value variable.

2. If a status value variable is compared to another status value variable, it is the integer values
that are compared.

EXAMPLE: The following examples show the use of the IF statement with simple and complex conditions.

1. IF statement with simple conditions.

Statement Comments

IF FOOD EQ ENERGY $ The items FOOD and ENERGY are compared.

GOTO DINNER $ True exit. If FOOD = ENERGY, transfer to statement
labeled DINNER.

Statement Comments

POUNDS = FOOD $ False exit. If FOOD � ENERGY, set the item
POUNDS to the current values of FOOD.

GOTO DIET $ Transfer to statement labeled DIET.

2. IF statement with simple conditions.

Statement Comments

IF AA EQ BB OR
BB NQ CC $

AA is compared to BB and BB is compared to CC.

GOTO ACCEPT $ True exit. If either AA = BB or BB � CC, a
transfer is made to ACCEPT.

GOTO REJECT $ False exit. If both AA � BB and BB = CC, a
transfer is made to REJECT.

3. Typical simple conditions.

COLOR EQ V(RED)
AA GR BB
3* CCC NQ DD + EEE
AAA(*2*) − BBB(*2*) LS CCC(*2*)

4. Typical complex conditions

The condition AAA − BBB LQ CCC AND AAA + DDD GR EEE is true only if AAA − BBB
is less than or equal to CCC and AAA + DDD is greater than EEE. It is false if either simple
condition is false.

5−11NASP−9288−02H15 August 1995

The condition AAA GR BBB OR CCC GQ DDD is true if either AAA is greater than BBB or
CCC is greater than or equal to DDD. It is false only if both simple conditions are false.

5. IF statement followed by a compound statement.

IF AA EQ V(Z) $
BEGIN BB = 0 $
GOTO XX $
END
BB = 1 $

If AA has the status value Z, Item BB is set equal to 0 and a transfer is made to the statement
labeled XX.

If AA does not have the status value Z, then BB is set equal to 1 and the next sequential instruction
is executed as usual.

5.4.1.2���Abbreating Complex Conditions.���Complex conditions may contain a certain amount of
redundancy (immediate repetition of an expression, which consists of up to six terms).

AAA GR BBB AND BBB LS CCC + 2 AND CCC + 2 EQ DDD

If the identical expressions are separated only by the logical operator AND, the AND and the redundant
expression can be omitted without changing the meaning of the condition.

For example, the preceding condition can be abbreviated as:

AAA GR BBB LS CCC + 2 EQ DDD

RESTRICTIONS: The following restrictions apply to abbreviating complex conditions:

1. The redundant expressions must be separated by the operator AND.

2. If one expression is abbreviated in a condition, all the permissible terms must be abbreviated.

5.4.1.3���The NOT Operator.���The operator NOT is used to complement conditions, relational and
logical operators and itself. It must not immediately precede a relational or logical operator; it can precede
another NOT.

The following list shows the effect of NOT on relational and logical operators.

Complementation Effect

NOT...EQ NQ

NOT...NQ EQ

NOT...GR LQ

NOT...LQ GR

NOT...GQ LS

NOT...LS GQ

NOT...AND OR

NOT...OR AND

NOT...NOT Cancelled

5−12 NASP−9288−02H 15 August 1995

The following examples show the effect of adding the operator NOT to a simple condition.

1. NOT AAA LS BBB is equivalent to AAA GQ BBB.

2. NOT NOT AAA EQ BBB is equivalent to AAA EQ BBB.

The operator NOT applies only to the condition following it unless several conditions and logical operators
following NOT are enclosed in parentheses. If an expression in parentheses follows a NOT, the entire
expression is complemented. The operators AND or OR are complemented only when parentheses enclose
the conditions they connect.

The following examples show the effect of the operator NOT on complex conditions.

1. NOT AA EQ BB AND CC EQ DD is equivalent to AA NQ BB AND CC EQ DD.

2. NOT (AA EQ BB AND CC EQ DD) is equivalent to AA NQ BB OR CC NQ DD.

3. AA EQ BB AND NOT CC EQ DD is equivalent to AA EQ BB AND CC NQ DD.

4. NOT AA EQ BB OR CC EQ DD AND EE EQ FF is equivalent to AA NQ BB OR CC EQ
DD AND EE EQ FF.

5. NOT (AA EQ BB OR CC EQ DD AND EE EQ FF) is equivalent to AA NQ BB AND (CC NQ
DD OR EE NQ FF).

6. AA EQ BB OR NOT CC EQ DD AND EE EQ FF is equivalent to AA EQ BB OR CC NQ
DD AND EE EQ FF.

When the operator NOT is used with an abbreviated complex condition, it must precede the entire condition.
For example:

NOT(AA EQ BB NQ CC) is equivalent to AA NQ BB OR BB EQ CC.

5.4.1.4���Evaluation of Conditions.���The following steps are taken to perform an evaluation of a
complex condition.

1. Determine values of arithmetic expression.

2. Perform NOT complementation.

3. Evaluate simple conditions; true or false.

4. Evaluate logical operations. If parentheses are used, the evaluation is from the innermost parentheses
outward. If both AND and OR are used, AND takes precedence.

5. JOVIAL will generate algebraic, as opposed to logical, comparisons if any arithmetic term is
found in an IF statement.

Given the information that AA = AB = AC = 2, the evaluation of a condition is:

1. AA EQ 2 AND (AB NQ 2 AND NOT (AC+3 GR AB−5 AND NOT (AB EQ AC OR AC GQ
4))).

2. 2 EQ 2 AND (2 NQ 2 AND NOT (5 GR −3 AND NOT(2 EQ 2 OR 2 GQ 4))).

3. 2 EQ 2 AND (2 NQ 2 AND(5 LQ −3 OR (2 EQ 2 OR 2 GQ 4))).

4. TRUE AND (FALSE AND (FALSE OR (TRUE OR FALSE))).

5−13NASP−9288−02H15 August 1995

5. TRUE AND (FALSE AND (FALSE OR TRUE)).

6. TRUE AND (FALSE AND TRUE).

7. TRUE AND FALSE.

8. FALSE.

Although the programmer performs these steps to ensure that his condition is logically constructed, the
actual evaluation can be performed more quickly. For example, for the same statement, the compiler would
generate code to perform the following operations.

1. If AA is not equal to 2, the condition is false; otherwise go to step 2.

2. If AB is equal to 2, the condition is false; otherwise go to step 3.

3. If AC + 3 is less than or equal to AB − 5, the condition is true; otherwise go to step 4.

4. If AB is equal to AC, the condition is true; otherwise go to step 5.

5. If AC is less than 4, the condition is false; otherwise the condition is true.

5.4.2���IFEITH/ORIF Statements

The IFEITH/ORIF statements are used together to specify a sequence of logical operations such that at
most one of a series of alternative operations is performed. A series of conditions is tested for true or
false values in sequence. When a false condition is encountered, the associated operation is skipped and
the next condition is tested. The first time a true condition is found, the associated operation is performed,
and then all following conditions and operations are skipped. It is possible that all conditions will be
false and no operations will be performed. It is also possible to code a final condition which is trivially
true, thus making the last operation an �ELSE" clause.

The format of the IFEITH/ORIF statement is:

IFEITH condition $

simple-or-compound-statement

ORIF condition $

simple-or-compound-statement

.

.

.

ORIF condition $

simple-or-compound-statement

ORIF condition $
1

simple-or-compound-statement

END

condition Any simple or complex condition that may be code in an IF statement.

5−14 NASP−9288−02H 15 August 1995

simple-or-compound-statement Any simple statement, or group of statements enclosed in BEGIN−END
brackets.

1 Trivially true condition � must be coded exactly as shown.

RESTRICTIONS: The following restrictions apply to use of the IFEITH/ORIF statements:

1. At least one ORIF must follow an IFEITH.

2. Use of an ORIF anywhere else in a program is prohibited.

3. A final END must terminate the IFEITH/ORIF structure. There is no matching BEGIN for
this END.

5.5���SEQUENCE CONTROL

Normally, operative statements are executed in the order in which they were written. The sequence control
statements are used to change the normal order of statement execution. The sequence control statements
are FOR, TEST, GOTO, and STOP.

5.5.1���FOR Statement

The FOR statement causes the statement that follows it (called the range of the FOR) to be repeatedly
executed a specified number of times.

The range of the FOR can be a single statement or a compound statement. A compound statement is
a sequence of statements enclosed in BEGIN and END brackets.

The number of times the range of the FOR is executed depends upon an index defined in the FOR statement.
The index can be given a single value, indicating that the range is executed once; or it may be given
an initial value and an increment, indicating that each time the range is executed, the index is incremented;
or it may be given an initial value, an increment, and a maximum, indicating that each time the range
is executed, the index is incremented until it passes the maximum and control passes beyond the range
of the FOR.

The format of a FOR statement is:

FOR index = start ,step
,step, max $

index Single alphabetic letter. It represents a 24-bit unsigned integer value and is defined
only in the FOR statement, never in an ITEM statement.

start Initial value of index. Must be an arithmetic expression, representing a positive
integer.

step Value by which the index is incremented each time the range of the FOR has
been executed. It must be an arithmetic expression, representing an integer.

max Limit of the index. When the index exceeds the maximum (in the positive direction,
if the increment is positive; in the negative direction, if the increment is negative),
control passes beyond the range of the FOR. The maximum value must be an
arithmetic expression representing a positive integer.

RESTRICTIONS: The following restrictions apply to the use of the FOR statement.

1. The initial value and maximum value of an index must be positive integers. The increment
must be an integer, but it can be either positive or negative. If non-integers are used, they
will be converted to integer.

5−15NASP−9288−02H15 August 1995

2. The index is defined only within the range of the FOR.

3. The values of any variable in the expression defining the increment or the maximum can be
changed in the range of the FOR.

4. A compound statement can be within another compound statement.

5. If the range of the FOR is a compound statement, and only an initial value was assigned to
the index, the last statement in the range (the statement preceding the END bracket) must
not be an IF statement.

6. If the range of the FOR is a compound statement, and an increment or an increment and a
maximum were assigned to the index, and the last statement of the compound statement is
an IF, a true condition causes incrementing and testing of the index and a false condition causes
control to pass beyond the range of the FOR.

7. If a compound statement is labeled, the label may be either before or after the BEGIN bracket.
Statements in the compound statement can be labeled.

8. A ‘NENT modifier may be used when processing variable-length tables to ensure that all the
entries in the table are processed. It is useful for processing fixed-length tables in case the number
of entries in the table changes from compilation to compilation. Since NENT represents the
number of entries, NENT minus 1 represents the last entry (entry counting begins with 0).

EXAMPLE: The following examples show the use of the FOR statement.

1. Index has only an initial value

Statement Comments

FOR K = 1 $ Index K is assigned only one value, range of FOR
executed only once.

TOP = K $ Item TOP is set equal to 1.

BUTT = K + BUTT $ Error. Outside range of FOR, K is not defined.

2. Index has initial value and increment.

Statement Comments

FOR C = 1, 3 $ Index C is assigned initial value 1 and is incremented
by 3 each time range is executed.

BEGIN Indicated range is compound statement.

Statement Comments

AREA(C) = 1/2 *
(BASE(C)*ALT(C))$

Table Item AREA in entry C is set equal to half the
product of table Items BASE and ALT in entry C.

IF C LS NENT (TABL)
$

If C is less than the number of entries in TABL, C
is incremented and the range of the FOR is executed
again. If C is greater than or equal to the number
of entries in TABL, control passes to the next sequential
instruction.

END

5−16 NASP−9288−02H 15 August 1995

3. Index has initial value, increment, and maximum. Item IN is a table item in Table TABL.

Statement Comments

FOR A = 0, 1, NENT
(TABL) − 1 $

Index A has initial value 0, is incremented by 1 each
time range is executed, and will not exceed the number
of entries in TABL.

IN(A) = A + OUT $ Range of FOR is a single statement setting the values
of IN.

AAA == BBB $ Exchange statement that will be executed only after
Item IN in each entry of TABL has been processed.

4. Index has a negative increment.

Statement Comments

FOR K=15, −3, 2 $ Index K has initial value 15, an increment of −3,
and if index becomes less than 2, the range will
not be executed.

BEGIN Indicates compound statement as range.

HIGH(K) = CLOUD $ Assignment statement.

RAIN(K) = FAIR −
SUN $

Assignment statement.

END Indicates end of range.

FOR... Statement outside range. Will be executed only
after range executed for K = 15, 12, 9, 6, and 3.

5.5.1.1���Multiple FOR Statements.���If several indexes are to be used in the range of a FOR statement,
a list of consecutive FOR statements, each identifying one index, can be used. The range of all of these
FOR statements is the single statement or compound statement following the last FOR in the list.

Initial values and increments can be given for each of the FOR statements in the list. Each time the
range is executed, the indexes are incremented the specified amount. A maximum for an index is significant
only for the first FOR statement in the list. When the maximum for this index is exceeded, control passes
to the next operative statement beyond the range of the FOR statements. The maximum values for the
other indexes are ignored. When incrementing the indexes in this common range, the last declared index
is incremented first.

EXAMPLE: In the following example showing the use of multiple FOR statements, CLOCK and HAND
are table items and HOUR is a single item.

Statement Comments

FOR J=0, 1, 9 $ First FOR statement; gives maximum.

FOR K=9, −1 $ FOR statement with negative increments.

5−17NASP−9288−02H15 August 1995

Statement Comments

BEGIN Indicates range is compound statement.

CLOCK(J)=HAND
(K) $

Assignment statement.

HOUR = HOUR +
CLOCK
(J) $

Assignment statement.

END End of range of FOR statements.

IF... Outside range of FOR statements. Executed only after
the range of the FOR statements is executed 10 times.

RESTRICTIONS: The following restriction applies to the use of multiple FOR statements. A statement
label may appear only on the first FOR of the group. Use of a statement label on any other FOR in
the group will be flagged as a serious error.

5.5.1.2���Nested FOR Statements.���Nested FOR statements are used to form a loop within a loop.
A FOR statement is nested if it is within the range of another FOR statement. Nested FOR statements
are particularly useful for processing arrays as shown in the following example.

ARRAY CLASS 10 5 2 I 6 U $

FOR I = 0, 1, 1 $

BEGIN FOR J = 0, 1, 4 $

BEGIN FOR K = 0, 1, 9 $

BEGIN IF CLASS($K, J, I $) GQ 100 $

GOTO AA $ CLASS ($K, J, I $)= 100 $ TEST $

AA. CLASS($K, J, I $) = 0 $

END END END

1. Array CLASS has three dimensions whose sizes are 10, 5, and 2, respectively.

2. Initially all three indexes are set to 0. Each times K goes through a complete cycle (0 through
9), J is incremented by 1. Each time J goes through a complete cycle (0 through 4), I is incremented
by 1. By the time the maximum for I is passed, the IF statement has been evaluated 100 times.

5.5.2���ALL Modifier

The ALL modifier is used only with FOR statements. With the use of ALL an entire table is processed,
entry-by-entry, starting with entry 0. The ALL modifier replaces the operands in the FOR statement that
specify the initial value, increment, and maximum value of the index.

For example, the statement

FOR A = ALL(TABL) $

is equivalent to the statement

5−18 NASP−9288−02H 15 August 1995

FOR A = 0, 1, NENT(TABL) − 1 $

5.5.3���TEST Statement

When the range of a FOR statement is a compound statement, a TEST statement may be included to
cause a transfer to the end of the range, where incrementing and testing of the index takes place. Often,
a TEST statement is used as either the true or false exit of an IF statement. An example of other occurrences
of the TEST statement is given in the discussion of the GOTO statement. See example 2, following.

An alternative use of the TEST statement is to exit from the range of the loop by transferring control
to the statement following the END of the compound statement. This is done by using the EXIT option.

An index can be specified in the TEST statement. In the range of multiple FOR statements, the TEST
statement with an index specified causes control to be transferred to the end of the common range; all
indexes in the range, up to and including the specified index, will be incremented and tested. In the range
of nested FOR statements, the TEST statement with an index specified causes control to be transferred
to the end of the range controlled by the specified index. See example 3, following.

The format of the TEST statement is:

TEST [EXIT] [index] $

index Name of an index defined in a FOR statement whose range includes the TEST
statement.

EXIT Specifies transfer out of loop.

RESTRICTIONS: The following restrictions apply to the TEST statement.

1. If a TEST statement appears in the range of nested FOR statements and no index is specified,
a transfer is made to the end of the range controlled by the last index defined before the TEST
statement appeared.

2. If a TEST statement appears in the range of multiple FOR statements and no index is specified,
a transfer is made to the end of the common range and all indexes are incremented just as
if the end of the range had been reached as usual.

EXAMPLES: The following examples show some uses of the TEST statement.

1. TEST statement with no index specified.

FOR I = 0, 1, 9 $

BEGIN IF ELBA(I) EQ 0 $

TEST $

ELBA(I) = ELBA(I) (*−2*) $

I = I + I $

END

The TEST statement is used as the true exit of the IF statement. The two Assignment statements
following the TEST statement are bypassed when the IF statement is true.

2. TEST statement in range of nested FOR statements.

5−19NASP−9288−02H15 August 1995

FOR I = 0, 10, 99 $

BEGIN FOR J = I, 1, I + 9 $ BEGIN

IF AA(I) EQ BB(I) $

TEST $

CC(J) = AA(I)$

END

DD(I) = AA(I)$

END

Although no index is specified in the TEST statement, the statement is preceded by the FOR statement
defining index J, so the effect is the same as though J appeared in the TEST statement. In order
to transfer control to the end of the I-controlled range, the index I would have to be specified in
the TEST statement.

3. TEST statement in range of multiple FOR statements.

FOR L = 0, 10, 49 $

FOR K = 2, 3 $

FOR M = ALPHA/2, −1, 1 $

BEGIN statement 1 $

statement 2 $

TEST K $

statement 3 $

END

When TEST K is encountered, a transfer is made to the end of the range, index K and index L are incremented,
and index L is tested. Index M is left unchanged.

5.5.4���GOTO Statement

The GOTO statement is used to cause an unconditional transfer within a program, or to test an item
or subscript switch, or to call an internal CLOSE or a separately compiled CLOSEd program.

The format of the GOTO statement is:

close-name
close-program-name [(=left-term)]

GOTO $
statement-label
switch-name [($subscript$)]

close-name Symbolic name on CLOSE statement.

closed-program-name Symbolic name on START statement of program compiled as a CLOSEd program.

5−20 NASP−9288−02H 15 August 1995

Statement-label Symbolic name identifying the operative statement to which control is transferred.

switch-name The name of the switch to be tested. The name must be subscripted if it is
a subscript switch or if it is an item switch and the related item is defined in
a table.

left-term Item to be set with return code. This is valid only under MVS, and only on
a call to a separately compiled CLOSEd program.

5.5.4.1���Unconditional Transfers.���If the object of a GOTO statement is a statement label, control
is transferred to the statement with the specified label.

A statement label is a symbolic-name composed of two six characters, the first of which must be alphabetic.
When the label precedes a statement, it must be terminated with a period. When the label is used in
a GOTO statement, the period is omitted.

A GOTO statement can be used to effect a transfer to any labeled operative statement in the same program
region. Since a simple statement within a compound statement can be labeled, a transfer can be made
into the middle of a FOR range or into the middle of a true or false exit of an IF statement. Transferring
into the middle of a FOR range may leave the index undefined, however.

A GOTO may not be used to transfer control to another program region. Any procedure or function (PROC)
is a region, and the portion of the program not in any PROC is a separate region. This means that it
is not possible to use a GOTO to return from a PROC to a calling program statement label. A method
for accomplishing this is given under Procedures in Section 6.

5.5.5���SWITCH Statement

A SWITCH statement is tested by a GOTO operative statement, and indicates a transfer to one of several
locations depending upon the value of a specified item or subscript when the switch is tested. The SWITCH
statement lists possible values of the item or subscript and corresponding labels to which transfer is made
if the item or subscript has one of these values when the switch is tested.

5.5.5.1���Item Switches.���Three statements are needed to define and test an item switch.

1. The item must be defined in a compiler-allocated ITEM statement, a programmer-allocated ITEM
statement, or a single ITEM statement.

2. A SWITCH statement must be given to relate the item to a switch name and the values of
the item to statement labels.

3. A GOTO statement with the switch name as its object must be given to test the switch. If
the item has one of the values specified in the SWITCH statement, a transfer is made to the
corresponding statement label. If the item does not have any of the specified values, control
passes to the statement following the GOTO statement.

The format of an item SWITCH statement is:

SWITCH switch-name (item-name) = (value = statement-label
[, value = statement-label]...),
[, else-statement-label] $

switch-name Programmer-assigned symbolic name used to identify the switch.

item-name Name of a previously defined single item or table item.

value A possible value of the item. Note that constants must be of the same type as
the item and especially that status value constants are required for status items.

5−21NASP−9288−02H15 August 1995

statement-label Label of an operative statement or a closed-compound-procedure-name to which
a transfer is to be made if the item has the corresponding value when the switch
is tested. Using MVS JOVIAL only, the statement-label may also be a procedure
with no arguments or a closed-program-name.

else-statement-label As �statement-label", but specifying a transfer to be made when none of the
conditions specified in the switch are met.

RESTRICTIONS: The following restrictions apply to item switches.

1. Because a SWITCH statement is declarative, it can appear anywhere in the program and not
interrupt program flow. It need not be before the GOTO statement testing it, but it must be
in the same region of the program. A region is a function, or a procedure, or a program excluding
functions and procedures. Functions and procedures are explained in Section 3, �Defined Procedures."

2. The ITEM statement that defines the item whose values control the switch must precede the
GOTO statement that tests the switch and the SWITCH statement.

3. All values in the statement must be unique.

4. A Procedure Dummy Statement Label (appearing as a formal input parameter in a PROC statement)
may not be referenced by a SWITCH.

5. If a closed-compound-procedure-name is specified in a SWITCH, return from the closed-compound
procedure will be to the statement following the GOTO that invoked the SWITCH.

6. Transfer to a closed-program-name will be allowed only if the name is declared by:

CLOSE closed-program-name EXTRN $

EXAMPLE: The following program shows the statements required to define and test an item switch.

START

TABLE SET V40 N $

BEGIN

ITEM JUDGE I 5 U $

ITEM VALUE S V(NONE) V(GOOD) V(BETTER) V(BEST) $

END

FOR F = ALL (JUDGE) $

BEGIN

GOTO RATE (F) $

VALUE (F) = V(NONE) $ TEST $

AA. VALUE (F) = V(GOOD) $ TEST $

BB. VALUE (F) = V(BETTER) $ TEST $

CC. VALUE (F) = V(BEST) $

END

5−22 NASP−9288−02H 15 August 1995

STOP $

SWITCH RATE (JUDGE) = (1 = AA, 2 = BB, 4 = CC, 3 = AA) $

TERM $

1. Table SET has two items in each entry. Item JUDGE is an integer field, and item VALUE is
a status value field.

2. The first statement in the range of the FOR controlled by index F tests the item switch RATE.
If Item JUDGE associated with switch RATE has a value of 1, 2, 3, or 4, a transfer is made
to the corresponding statement label. For any other value of JUDGE, the statement immediately
following the GOTO statement is executed.

3. Note that RATE must be subscripted because it is an item switch for Item JUDGE, which is
in a table.

4. Note that TEST statements cause transfer of control to the end of the range when the status
value has been set.

The following list shows possible values for JUDGE and the corresponding value for VALUE.

When JUDGE equal Then VALUE equal

4 BEST

5 NONE

2 BETTER

1 GOOD

3 GOOD

0 NONE

5.5.5.2���Subscript Switches.���A subscript switch is similar to an item switch except that a transfer
is made to a specified statement depending upon the value of a subscript rather than the value of an
item.

A statement label must be specified, either implicitly or explicitly, for each consecutive value of the subscript.
Usually, the subscript is an index, but it may be any arithmetic expression.

The following statements must be given to define and test a subscript switch.

1. A SWITCH statement must be given to relate the switch name to the subscript and to specify
statements to which transfer is to be made as the subscript assumes consecutive values. Either
a statement label or a null field (indicated by two consecutive commas or by an opening parenthesis
and a comma) must be given for each value of the subscript.

2. A GOTO statement with the switch name as the object must be given to test the switch. If
the value of the subscript exceeds the number of fields in the SWITCH statement, the effect
is as though the statement were filled out with null fields.

The format of the subscript SWITCH statement is:

SWITCH switch-name = (statement-label[,[statement-label]

5−23NASP−9288−02H15 August 1995

]...)[,else-statement-label]$

switch-name Programmer-assigned symbolic name used to identify the switch.

statement-label Label of statement or a closed-compound-procedure name to which transfer is
to be made for consecutive values of the subscript. First label for first value
of subscript, second label for second value, etc. If a field is null, the transfer
is to the else-statement-label or to the next sequential operative statement following
the GOTO statement. Using MVS JOVIAL only, the statement-label may also
be a procedure with no arguments or a closed-program-name.

else-statement-label As �statement-label", but specifying a transfer to be made if the input value
corresponds to a null field or is outside the range of explicitly coded fields.

RESTRICTIONS: The following restrictions apply to the use of subscript switches.

1. The SWITCH statement need not precede the GOTO statement that tests it, but it must be
in the same region of the program.

2. A procedure Dummy Statement Label (appearing as a formal input parameter in a PROC statement)
may not be referenced by a SWITCH statement.

3. If a closed-compound-procedure-name is specified in a switch, return from the closed-compound-pro-
cedure will be to the statement following the GOTO which invoked the SWITCH.

4. Transfer to a closed-program-name will be allowed only if the name is declared by:

CLOSE closed-program-name EXTRN $

EXAMPLE: The following example gives a problem and a solution using subscript switches.

Given Table PLACE consisting of 40 entries with each entry containing one item:

1. Double the contents of the item in entries 1, 3, 7, 11, 13, 17, 21, 23, 27, 31, 33, and 37.

2. Square the contents of the item in entries 4, 6, 14, 16, 24, 26, 34, and 36.

3. Extract the cube root of the remaining values of PLACE.

Solution:

FOR K = 0, 10, 39, $
BEGIN FOR I = K, 1, K + 9 $
BEGIN GOTO CNTSW ($I−K$)$
PLACE (I) = PLACE(I) (*1/3*) $ TEST $
SQ. PLACE(I)=PLACE(I) (*2*) $ TEST $
DOUBL. PLACE (I)=PLACE (I) *2$
END
END
SWITCH CNTSW=(,DOUBL,,DOUBL,SQ,,SQ,DOUBL,,,)$

Note that the last three commas before the closing parenthesis could be omitted, and the effect would
be the same.

5.5.6���STOP Statement

The STOP statement is used to interrupt program execution. In a main program, if no statement label
is given in the STOP statement, the compiler generates the symbolic instruction SVC SYSEOJ. When
executed, this instruction causes a supervisor call interrupt which is interpreted by MVS as �end-of-job".

5−24 NASP−9288−02H 15 August 1995

If a statement label is given, the compiler generates the symbolic instruction SVC SYSWAT. When executed,
this instruction causes a supervisor call interrupt which is interpreted by MVS as a request to type �PROGRAM
WAITING" on the operator’s KVDT, wait for the operator to type �CONT", and then return to the program.
Generated code following the SVC then transfers control to the statement label given in the STOP statement.

Within a closed program, a STOP statement returns control to the calling program as discussed in the
section �Defined Procedures". STOP statement that are within closed program may not include statement
labels.

The format of the STOP statement is

(expression)
STOP $

 statement-label

statement-label The statement-label with which the program resumes if the operator restarts
execution at the console typewriter.

expression Return code to be passed to the caller. This is valid only under MVS, and only
within a CLOSEd program, If any STOP statements in a CLOSEd program have
return codes, all other STOP statements (without return codes) in the same program
will have a return code of zero implied.

6−1NASP−9288−02H15 August 1995

6.0 DEFINED PROCEDURES

A JOVIAL program can be segmented through the use of defined procedures. A defined procedure is a
block of code that is located out of the line of flow of the program that executes it. It consists of operative
statements and possibly data declarations. A call is issued to a defined procedure; the defined procedure
is executed, and control returns to the point of departure from the calling program.

Closed compound procedures, functions, procedures, closed programs, and library routines are the five kinds
of defined procedures. They differ in the method in which they are called and in the provision for data
communication. A Block-Data program is not strictly a defined procedure, but is described in this section
because it is a special type of compilation.

Closed programs and library routines can be compiled by themselves, but are executed only if called by
another program. Closed-compound procedures, functions, and procedures must be compiled with the program
that calls them.

A closed program is a complete JOVIAL program containing data declaration statements and operative
statements. Data communication between a closed program and the calling program is through a compool.

A library routine is a function or a procedure stored on the library tape. Data communication is the same
as for functions and procedures.

Functions and procedures contain data declarations and operative statements. Data communication is through
parameters. Data declarations must be given for input and output parameters and for all data used in
the function or procedure and not defined in the main program region or in compool.

Closed-compound procedures contain only operative statements. They can refer to any data defined for
the region containing the closed-compound procedure.

6.1���CLOSED−COMPOUND PROCEDURES

A closed-compound procedure is a closed subroutine that is called from the region of the program in which
is is defined. No parameters are passed to the closed-compound procedure.

A closed-compound procedure consists of a CLOSE statement, giving the name of the procedure, followed
by operative statements. The call to a closed compound procedure is a GOTO statement with the closed-com-
pound-procedure-name as its object.

6.1.1���Form of Closed-Compound Procedure

A closed-compound procedure consists of the following two parts:

1. A CLOSE statement giving the name of the closed-compound procedure.

2. A body consisting of operative statements enclosed in BEGIN and END brackets. During execution,
when the END bracket is reached, control returns to the statement that followed the GOTO
statement which called the closed-compound procedure. A RETURN statement can be used to
cause a return before the END bracket is reached.

6.1.1.1���CLOSE Statement.���The form of the CLOSE statement is:

CLOSE close-compound-procedure-name $

6−2 NASP−9288−02H 15 August 1995

Closed-compound-procedure-name Programmer-assigned symbolic name used to refer to the closed-com-
pound procedure.

RESTRICTIONS: The following restrictions apply to closed-procedures.

1. A closed-compound procedure must not interrupt program flow. A GOTO, STOP, TEST, or RETURN
statement should be precede a closed-compound procedure so that it is not executed unless it
is called.

2. A closed-compound procedure must not contain functions or procedures.

3. A closed-compound procedure may be enclosed in BEGIN and END brackets. This means that
it can be included in the range of a FOR statement.

4. A closed-compound procedure can refer to any data names or statement labels defined for the
region in which it is defined.

6.1.2���Form of Call to Closed-Compound Procedure

A closed-compound procedure is called by a GOTO statement.

The form of the GOTO statement is:

GOTO closed-compound-procedure-name $

closed-compound-procedure-name Symbolic name given in the CLOSE statement.

RESTRICTIONS: The following restrictions apply to calls made to closed-compound procedures.

1. A closed-compound procedure can be entered only if it is called by a GOTO statement.

2. Return from a closed-compound procedure is to the statement after the GOTO statement.

3. A call to a closed-compound procedure may not be made within the procedure itself.

6.1.3���Example of a Closed-Compound Procedure

The following example shows a main program that contains a closed-compound procedure.

Main Program Comments

START MAIN Beginning of main program named MAIN.

TABLE TRIP V 100 $ Table statement.

BEGIN Beginning of definition of entry format.

ITEM TIME A 16 U 4 $ Item statement.

ITEM RATE I 8 U $ Item statement.

ITEM DIST A 24 U 4 $ Item statement.

END End of definition of entry format.

FOR A = ALL (DIST) $ FOR statement.

6−3NASP−9288−02H15 August 1995

Main Program Comments

BEGIN Beginning of compound FOR range.

IF RATE (A) GR 20 $ IF statement.

GOTO REKON $ True exit. Transfer to closed-compound procedure.

TIME (A) = TIME
(A) * 60 $

Assignment statement.

IF TIME (A) GR 120 $ IF statement.

GOTO REKON $ True exit. Transfer to closed-compound procedure.

TEST $ False exit. Transfer to end of range of FOR.

CLOSE REKON $ Beginning of closed-compound procedure.

BEGIN Begin body of closed-compound procedure.

DIST(A)=RATE(A)
*TIME(A) $

Assignment statement.

END End of body of closed-compound procedure.

END End range of FOR.

STOP$

TERM$ End program MAIN.

6.2���FUNCTIONS

Functions are defined procedures that produce one value each time they are called. The function call,
which is the name of the function followed by input parameters enclosed in parentheses, is one operand
of an arithmetic expression. In processing the expression, the function is executed when its value is required.
(See �Rules of Precedence".)

For example, assume SIN is a function that can receive one input parameter. Further assume that the
statement IF SIN(A) EQ RAD is given. When the IF statement is encountered, the function SIN is called
with A as the input parameter. The function is executed producing a single value to be compared to the
Item RAD.

6.2.1���Form of Function

A function consists of three parts:

1. A PROC statement assigning a name to the function and naming the input parameters.

2. A heading that consists of data declarations. The function name, input parameters, and any
data used in the function but not defined in the main program with which the function is compiled
must be defined in the heading.

3. A body that consists of operative statements enclosed in BEGIN and END brackets. During
execution, when the END bracket is reached, control returns to the statement containing the

6−4 NASP−9288−02H 15 August 1995

function call. A RETURN statement can be used to cause a return to the calling program from
within the body of the function rather than at its logical end. Return may not be via a GOTO
statement specifying a label within the calling program.

6.2.1.1���PROC Statement.���The form of a PROC statement to identify a function is:

PROC function-name ([input-parameter][,[input-parameter]]...)$

function-name Programmer-assigned symbolic name used to identify the function.

input-parameter Name of a single item, defined in the heading of the function, that will receive
data from the calling program.

RESTRICTIONS: The following restrictions apply to functions.

1. The input parameters must be single items.

2. The names of the input parameters must be unique within the function but they can duplicate
names defined in other regions of the program.

3. Functions must not contain other functions or procedures.

4. A function must not be enclosed in BEGIN and END brackets.

5. The output parameter (function-name) must be defined as a single item.

6. There must be at least one input parameter in a function.

6.2.2���Form of Function Call

A function call is not a complete operative statement. It can be part or all of an arithmetic expression.
It consists of a function name followed by input parameters. After the function is executed, the output
parameter contains the value determined by the operations in the function. The effect would be the same
if instead of using a function, operative statements set an item to a value; and this item, instead of the
function call, was used in an arithmetic expression.

The form of a function call is:

function-name (input-parameter[,[input-parameter]]...)

function-name Function name given in the PROC statement.

input-parameter Expression or table address that is to be used as an argument. The value of
the expression specified as the first input parameter in the call is passed to the
item specified as the first input parameter in the PROC statement, etc.

RESTRICTIONS: The following restrictions apply to function calls.

1. When a table name or unsubscripted array name is used as an input parameter, the address
of the beginning of the table or array is transmitted to the corresponding input parameter given
in the PROC statement, which must be an integer, EBCDIC, or ASCII item of 24 or more bits
and a scale of zero.

2. The input parameters must correspond in number and order to the input parameters in the
PROC statement.

6−5NASP−9288−02H15 August 1995

3. A null field indicated by two consecutive commas (or by an opening parenthesis and a comma,
or by a comma and a closing parenthesis, for the first and last parameter respectively) can
be used to represent an omitted input parameter. If a null input parameter is used, the corresponding
input parameter in the PROC statement remains set to the value it had the last time the function
was called. If a function has only one input parameter, it may not be omitted in the call.

4. A function cannot call itself.

5. A function cannot call another defined procedure which, in turn, calls it on any level, i.e., the
called defined procedure cannot call the function or call another defined procedure that calls
the function, etc.

6. A function call can be used as an input parameter to another function or procedure.

7. The return to the calling program is to the operative statement that contains the function call.

6.2.3���Example of a Function

The following example shows a calling program and a function.

Program Comments

START CALC Identifies CALC as main program.

ITEM HRS F $ Item declaration.

ITEM SCALE F $ Item declaration.

ITEM RATE F $ Item declaration.

ITEM GROSS F $ Item declaration.

GROSS = AMT(HRS, SCALE) $ Assignment statement calling function AMT.

.

.

.

.

IF AMT(HRS, SCALE) GR 10000
$

IF statement calling function AMT.

GOTO LONG $ True exit.

GOTO SHORT $ False exit.

PROC AMT(TIME, SCALE) $ Identifies function AMT.

ITEM AMT F $ Describes function output parameter.

ITEM TIME F $ Describes input parameter.

ITEM SCALE F $ Describes input parameter.

ITEM PAY F $ Describes item used in function and not defined in region
of program containing function call.

6−6 NASP−9288−02H 15 August 1995

Program Comments

BEGIN Identifies beginning of body of function.

IF SCALE = 15 $ IF statement.

BEGIN AMT = 1000 $ Compoud statement used as true exit.

RETURN $ END Sets function output parameter and returns to statement
containing function call.

PAY = RATE * SCALE False exit.

AMT = TIME * PAYS Set function output parameter.

END Return to calling statement.

LONG. ... Statement label.

SHORT. ... Statement label.

STOP $

TERM $ End of program CALC.

6.3���PROCEDURES

A procedure is a type of defined procedure that can produce several values each time it is called. The
procedure consists of a statement giving the procedure name and input and output parameters, followed
by data declarations, followed by operative statements. The procedure call is a complete operative statement
that calls the procedure and gives input and output parameters. After the procedure is executed, control
returns to the statement after the procedure call.

6.3.1���Form of Procedure

A procedure consists of the following three parts:

1. A PROC statement that assigns a name to the procedure and names input parameters that
will receive data from the calling program and output parameters that will return data to the
calling program.

2. A heading that consists of data declarations. The input and output parameters must be defined
in the heading. Any data used in the procedure that is not defined in the main program with
which the procedure is compiled must also be defined in the heading.

3. A body that consists of one or more operative statements enclosed in BEGIN and END brackets.
During execution, when the END bracket is encountered, control returns to the operative statement
following the procedure call in the calling program. A RETURN statement can be used to return
to the calling program from within the procedure rather than at the end. Return may not be
via a GOTO statement specifying a statement label within the calling program.

6.3.1.1���PROC Statement.���The form of the PROC statement used to identify procedure is:

PROC procedure-name
[([input-parameter[,input-parameter...]]���]
[=output-parameter[,output-parameter]...])]$

6−7NASP−9288−02H15 August 1995

procedure-name Programmer-assigned symbolic name used to identify the procedure.

input-parameter Name of item defined in the procedure heading, which will receive data from
the calling program, or a statement label (with period).

= Separates input parameters from output parameters.

output-parameter Name of item defined in the procedure heading, which will return data to the
calling program.

RESTRICTIONS: The following restrictions apply to the procedures.

1. The output parameters must be single items. The input parameters must be single items or
statement labels.

2. The names of the input and output parameters must be unique within the procedure, but they
can duplicate the names of items in other regions of the program.

3. Procedures must not contain other procedures or functions.

4. A procedure must not be enclosed in BEGIN and END brackets.

5. A procedure with no parameters is written in the form: PROC procedure-name $.

6. A statement label appearing in the PROC statement must be unique within the procedure.

6.3.2���Form of Procedure Call

A procedure call is a complete operative statement. It consists of the name of the procedure, followed
by input parameters that pass data to the procedure and output parameters that receive data from the
procedure. After the procedure is executed, control returns to the statement after the procedure call. The
items named as output parameters are set to the values determined in the procedure.

The form of a procedure call is:

procedure-name [([input-parameter]
[,[input-parameter]]
..[=[output-parameter]]
[,[output-parameter]] ...)] $

procedure-name Procedure name given in the PROC statement.

input-parameter Expression or table address to be used as argument. The value of the expression
specified as the first input parameter in the call is passed to the item specified
as the first input parameter in the proc statement, etc. A statement label (with
period) defined in the calling region may also be used.

= Separates input parameters from output parameters.

output-parameter Name of variable previously defined in the calling program, which returns data
from the procedure to the calling program. After the procedure is executed, the
value of the variable specified as the first output parameter in the PROC statement
is passed to the variable specified as the first output parameter in the call, etc.

RESTRICTIONS: The following restrictions apply to procedure calls.

1. When a table name, statement label, or unsubscripted array name is used as an input parameter,
the address of the beginning of the table or array or statement address is transmitted to the

6−8 NASP−9288−02H 15 August 1995

corresponding input parameter given in the PROC statement, which must be an integer, EBCDIC,
or ASCII item of 24 or more magnitude bits and a scale of zero.

2. The input and output parameters must correspond in number and order to the input and output
parameters in the PROC statement.

3. A null field, indicated by two consecutive commas, can be used to represent an omitted input
or output parameter. If a null input parameter is used, the corresponding input parameter in
the PROC statement remains set to the value it had the last time the procedure was called.
If a null output parameter is used, any output value calculated by the procedure is ignored
by the calling program.

4. A procedure cannot call itself.

5. A procedure cannot call any defined procedure that, in turn, calls it or calls another defined
procedure that calls it, etc. That is, procedure calls cannot exhibit circularity.

6. A procedure call may not be used as an input parameter to another procedure.

7. The return to the calling program is to the operative statement following the procedure call.

8. A call to a procedure with no parameters is written in the form: procedure-name $.

9. If the procedure definition contains a statement label, and the procedure body a GOTO referencing
that label, transfer will be to the address furnished by the calling program. Generally this should
be a statement label in the calling region. Use of this option will, however, force base register
initialization at the referenced label in the calling region. Use of a SWITCH reference such
a label is not permitted.

6.3.3���Example of a Procedure

The following is an example of a procedure.

Procedure Explanation

PROC CALC (RATE, TIME=DIST, ERROR)
$

PROC statement identifying procedure CALC and
parameters.

ITEM RATE F $ Data declarations for all input and output parameters.

ITEM TIME F $

ITEM DIST F $

ITEM ERRORS V(NO)

V(YES) $

BEGIN Indicates beginning body of procedure.

IF RATE EQ 0 OR TIME EQ 0 $ Test for error condition.

BEGIN NUMERR = NUMERR + 1 $
ERROR = V(YES) $
RETURN $
END

True exit. Item NUMERR in the main program region
is incremented by 1. ERROR is set to YES and return
is to statement after the procedure call in the calling
program.

ERROR = V(NO) $ False exit. No error condition exits.

6−9NASP−9288−02H15 August 1995

Procedure Explanation

DIST = RATE * TIME $ Set output parameter DIST.

END Indicates end of procedure. Return is to statement after
procedure call in the calling program.

6.4���CLOSED PROGRAMS

A closed program can be compiled by itself but is executed only if called from another JOVIAL program.
The method of passing data between a closed program and the calling program is through a compool.
The same compool must be specified on the START statements, of both programs.

6.4.1���Form of a Closed Program

A closed program is identified by the CLOSE option on the START statement. Following the word CLOSE
is a programmer-assigned symbolic name that identifies the closed program so that it can be called by
name.

Following the START statement in the closed program are data declaration and operative statements as
for a main program. The only difference is in the compiler’s interpretaton of STOP statements.

The form of the STOP statement is:

STOP[(expression)] $

The STOP statement, when encountered in a closed program, causes control to return to the statement
following the GOTO statement that called the closed program.

RESTRICTIONS: The following restrictions apply to closed programs.

1. A closed program can contain defined procedures.

2. The method of data communication is through the compool.

3. Return from the closed program is to the statement after the call in the calling program. The
method of return is through the STOP statement.

4. (expression) is a return code valid only under MVS. See the section on �Operative Statements"
for further details.

6.4.2���Form of Call to Closed Program

A closed program is called by a GOTO statement in the calling program.

The form of the GOTO statement is:

GOTO closed-program-name[(= left-term)] $

closed-program-name Symbolic name that appeared after the CLOSE option on the START statement
at the beginning of the closed program.

left-term Item in which a return code is to be stored.

6−10 NASP−9288−02H 15 August 1995

RESTRICTIONS: The following restrictions apply to calls to closed programs.

1. The closed program is not executed unless it is called from another program at the execution
time. Both of the programs must be loaded at the same time.

2. Data communication is through a compool.

3. Use of return code is valid only under MVS. See the section on �Operative Statements" for
further details.

6.4.3���Declaration of a Closed Program

Declaration of a symbol as a closed-program-name in a calling program is always permitted and in some
cases required. An otherwise undefined name used in a GOTO statement will be assumed to be a closed-program-
name, but a warning will be issued. If an ordinary linkage is desired, either an explicit declaration or
the above assumption is permissible. If linkage via NAS SVC 104 is required, an explicit declaration must
be used.

The format of the declaration is:

EXTRN
CLOSE closed-program-name $

LINKABL

closed-program-name Symbolic name appearing on START statement of program being called.

EXTRN Ordinary linkage to be used.

LINKABL NAS SVC 104 linkage to be used.

RESTRICTIONS: The following restriction applies to closed-program declaration.

1. The declaration may appear at any point in the calling program where a CLOSE statement
would be permitted.

6.5���LIBRARY ROUTINES

A library routine is a function or a procedure, separately compiled, that is stored in the JOVIAL library.
It is extracted from the library at load time and loaded with the object program that calls it.

6.5.1���Form of Library Routine

A library routine begins with a START statement with the LIBE or LINKABL option specified on it and
ends with a TERM statement. Between these statements is a procedure or a function; i.e., a PROC statement
followed by the heading and body of a function or procedure.

RESTRICTIONS: The following restrictions apply to library routines.

1. A library routine is subject to the same restrictions as a function or a procedure except that
there are no main program variables which could be referenced, and input or output parameters
may not be status type items.

2. If a library routine contains a call to a closed program, the closed program must be in storage
when the library routine is executed.

3. Reference can be made to compool data. Note that if the compool is changed, the library routine
must be updated to reflect the change.

6−11NASP−9288−02H15 August 1995

4. A library routine can be written in direct code, in which case a DIRECT bracket will follow
the START statement. If the library routine is written in direct code, the programmer must
supply the linkages to it (i.e., Prologue and Epilogue coding in the library routine). The programmer
must also supply his own LIBEDT control statement.

5. The PROC statement immediately following the START statement must define a PROC whose
name is identical to the program name on the START statement.

6. A library routine provides an exception to the rule that PROCs must not be declared between
BEGIN and END brackets. PROCs may appear between the BEGIN and END brackets corresponding
to the PROC statement immediately following the START statement.

6.5.2���Form of Call to Library Routines

If the library routine is a function, a function call is used; if it is a procedure, a procedure is used. The
form of function and procedure calls is given under the headings �Functions" and �Procedures".

6.5.3���Example of a Library Routine

Below is a skeleton example of the statements needed in a library routine.

Statement Explanation

START LIBE SALE Identifies SALE as library routine.

PROC SALE(IN, OUT) $ PROC statement.

ITEM SALE F $ Begin heading of function and identifies SALE as a function.

ITEM IN F $

ITEM OUT F $

BEGIN Begin body of function.

IF OUT GR ORDER $

.

.

.

END End body of function.

TERM End of library routine.

6.6���RETURN STATEMENT

The form of the RETURN statement is:

RETURN $

RESTRICTIONS: The following restrictions apply to RETURN statement.

The RETURN statement must appear between the BEGIN−END brackets of a procedure, function, or
closed-compound procedure.

6−12 NASP−9288−02H 15 August 1995

6.7���GENERAL COMMENT ABOUT DEFINED PROCEDURES

The following statements summarize the rules given for defined procedures and show the relationship
between the different kinds of defined procedures.

1. A defined procedure can be entered only at the beginning.

2. After the defined procedure is executed, control returns to the point of departure from the calling
program. Except for closed programs, the return occurs when an END bracket or a RETURN
statement is encountered. In a closed program, the return occurs when a STOP statement is
encountered. A GOTO statement can be used in a closed-compound procedure to transfer to
any statement in the region in which it is defined.

3. Closed programs and library routines are compiled by themselves and must begin with a START
statement and end with a TERM statement. They are executed only if called from another program.
The rest of the defined procedures must be compiled with the program that calls them. They
may be placed anywhere in the program, except that closed-compound procedures must not interrupt
program flow.

4. Data communication between a calling program and a closed program is through a compool.
Closed-compound procedures can refer to any data for the region in which they are defined.
In the rest of the defined procedures, parameters in the calling statement and the PROC statement
are used to pass data.

5. A defined procedure cannot call itself (i.e., recursive use is not permitted) but may call other
defined procedures.

6. Calls to a defined procedure must not exhibit circularity. That is, for a sequence of defined procedures
whose logic is such that each defined procedure calls a lower level defined procedure, the lower
level defined procedure must not call higher level defined procedures.

7. Main programs, closed programs, and library routines can contain functions, procedures, and
closed-compound procedures. Closed-compound procedures, functions, and procedures can contain
closed-compound procedures.

8. A defined procedure can refer to a compool.

6.8���BLOCK−DATA PROGRAMS

A Block-Data Program is a special compilation whose purpose is to provide an object module containing
preset data for various data declarations (usually compool defined or derived).

Data declarations are compiled normally, and the ZYDATA CSECT is placed at zero displacement relative
to the start of the program. Operative statements are not required. They are permitted but are assembled
in a DSECT and produce no object code. Use of DIRECT code to preset data is permitted and should
be as described on page 7−4 with one exception: the last instruction in the sequence should be �ZYPROG
DSECT".

The use of the Block-Data Option is selected by specifying the keyword �BLKDATA" on the START statement.

6.9���SPECIAL RESTRICTIONS ON PROCEDURE/FUNCTION CALLS

Recent compiler changes have been made to replace certain Library Procedure/Function calls with in-line
code. Where in-line code cannot be generated, the compiler will default to normal calls. However, since
it cannot be easily determined which will result, there is no guarantee that a call with null arguments
will actually be able to use values input to the last previous call. Some of these can be determined early
enough to force all calls to actual Library linkage with resulting loss of object code efficiency. Others will
result in diagnostics if null arguments are used.

6−13NASP−9288−02H15 August 1995

Special restrictions on procedure or function calls are as follows:

a. MVC, MVI � null arguments should be avoided, but will be permitted at present.

b. CLC, CLCI, OC, OI, NC, NI, XC, XI, TR � null arguments are not permitted and will result
in a diagnostic. OI, NI and XI may or may not be available depending on the Library tape
used. They require Library PDT entries for procedures ZVOI, ZVNI and ZVXI in order to compile.
Depending on whether in-line code or procedure calls are generated object modules for these
may be needed in order to load and execute.

7−1NASP−9288−02H15 August 1995

7.0 DIRECT CODE

Parts of JOVIAL programs can be written in Basic Assembler Language instead of the JOVIAL language.
These parts are enclosed in DIRECT $ and JOVIAL brackets to identify them as direct code and to separate
them from the rest of the program.

The information between DIRECT $ and JOVIAL is considered to be one JOVIAL statement. For example,
such a statement may be the true branch of an IF statement or the range of a FOR. The DIRECT $
bracket may include an estimated count of the number of bytes of storage used in direct code.

The format is:

DIRECT[count] $

count An integer constant specifying the estimated number of bytes used in direct code.

RESTRICTIONS: The following restrictions apply to direct code:

1. The count should be a high estimate. Code generated from ASSIGN statements and literals should
be included in the estimate.

2. If no count is specified, the compiler assumes the worst case, namely that the direct code is
arbitrarily long. This will result in a LTORG that is often unnecessary. DIRECT with an excessively
high estimated count is still better than no count at all.

Direct code may be entered only at the DIRECT $ bracket, either because it is the next sequential statement
or because transfer to it was made by a GOTO statement. A statement label (providing a reference for
transfers) can precede the bracket DIRECT $.

Control may not be transferred from a JOVIAL statement to the middle of a direct code. However, transfer
of control within direct code is not restricted, even if the direct code is not within the same DIRECT
$ and JOVIAL brackets.

All Basic Assembly Language machine instructions (including privileged instructions) and all assembly
instructions except ICTL, SPEM and END can be used. The publication IBM Data Processing System:
Basic Assembly Language User’s Manual (BALASM) describes the Assembly Language.

The JOVIAL compiler generates code assuming the following types of program interrupts are masked out.

fixed-point overflow

decimal overflow

exponent underflow

significance

If these masks are changed in a section of direct code, it may be desirable to reset them before re-entering
the JOVIAL-coded program. System masks are discussed in the IBM Data Processing System Principles
of Operation.

7−2 NASP−9288−02H 15 August 1995

The following sections explain the conventions used to refer to data in direct code.

7.1���ASSIGN STATEMENT � REFERENCE TO JOVIAL DATA BY NAME

The ASSIGN statement is a JOVIAL statement that may be used in direct code to refer by name to items
defined in JOVIAL data declarations. There are two forms of the ASSIGN statement: the first sets a register
to the current value of a JOVIAL item; the second sets a JOVIAL item to the current value of a register.

The forms of the ASSIGN statement are:

ASSIGN R(scale) = arithmetic-expression�$
left-term = R(scale) ��$

R designates Floating-point register 0 will be used if the left-term is a floating point item
not modified by BIT or BYTE, or if the first term of an arithmetic-expression
is a floating point item not modified by BIT or BYTE.

General register 1 will be used for EBCDIC or ASCII items of four or fewer
characters, or for integer, fixed point, or status items.

General register pair 0−1 will be used for EBCDIC or ASCII items of more
than four characters. BIT or BYTE modifiers will be treated as EBCDIC items.

scale Integer specifying number of bits to the right of the binary point. Must be specified
even if scale is zero.

left-term As left-term for Assignment statement, except ENT is not permitted.

arithmetic-expression As arithmetic-expression for Assignment statement, except ENT is not permitted.

RESTRICTIONS: The following restrictions apply to the ASSIGN statement.

1. An ASSIGN statement must appear on a card image by itself, except that it can be on the
same card image as the DIRECT $ or JOVIAL bracket.

2. Data is not converted except for shifting to adjust the binary point for non-floating-point data.

EXAMPLE: The following example shows an ASSIGN statement used to refer to JOVIAL data by name.

ITEM ONE F $

DIRECT $

ASSIGN R (0) = ONE $

.

.

.

.

JOVIAL

7.2���REFERENCE TO ADDRESS OF JOVIAL DATA

Addresses of JOVIAL data defined in other parts of a JOVIAL program can be loaded into a general register
using an instruction of the following format:

7−3NASP−9288−02H15 August 1995

L register,=A(xxname)

register A general register. A blank must not follow the register specification.

=A(xxname) An address constant literal that contains no embedded blanks. =A(...) is the assembly
language method of indicating address constant literals. The expression enclosed
in parentheses indicates the JOVIAL data whose address is to be loaded. The
xx is a data prefix that indicates the program region and name is a JOVIAL-defined
data name.

A data prefix of A1 indicates that the item was defined in the main program. Functions and procedures
are assigned data prefixes in the order of their appearance in the program; A3, A5, A7, A9, AB, AD,...,
AX, AZ, B1, B3,..., YZ. All compool data is assigned to the prefix ZX.

To reference data which may be in the same region, the main program, or the compool, use the prefix
_1. In resolving this reference, the compiler will first assign the prefix for the current region; if not found,
a prefix of A1 will be assigned; if not found then, a prefix of ZX will be assigned. If the required name
is not found with either of the three prefixes, the data name is unresolved, and an assembly error will
occur.

EXAMPLE: In the following example, showing direct code references to the addresses of JOVIAL data,
assume that the main program contains a function and then a procedure. In the main program region,
Item ONE is defined; in the function, Item TWO is defined; in the procedure, Item THREE is defined.
Then the following statements can be given to load the addresses of Items ONE, TWO, and THREE into
general registers 2, 3, and 4:

L 2,=A(A1ONE)

L 3,=A(A3TWO)

L 4,=A(A5THREE)

7.3���REFERENCE TO JOVIAL STATEMENT LABELS

The address of JOVIAL statement labels defined in other parts of a JOVIAL program can be loaded into
a general register, using an instruction of the following format.

L register,=A(yylabel)

register A general register. A blank must not follow the register.

=A(yylabel) An address constant literal that contains no embedded blanks. The letters yy
represent a statement prefix that indicates the program region and label is a
JOVIAL label.

A data prefix of A0 indicates that the label is in the main program. Functions and procedures are assigned
statement prefixes in the order of their appearance in the program; A2, A4, A6, A8, AA, AC,..., AW, AY,
B0, B2,..., YY. Library program names are assigned the prefix ZW or ZV.

To reference a label which is in the same region, you may prefix the label with _0. The compiler will
assign the prefix of current region.

7.4���ADDITIONAL DIRECT CODE LIMITATIONS

1. The compiler generates BAL symbols as described above to avoid duplication of names in various
program regions and assigns these symbols to a �$" qualification field. This qualification carries

7−4 NASP−9288−02H 15 August 1995

into direct code sequences unless the programmer uses his own QUAL statement. Care must
be taken to ensure that conflicts between direct code symbols and JOVIAL-generated symbols
are avoided. The programmer is permitted to reference and transfer freely between regions,
although the results may be catastrophic.

2. While it is beyond the scope of this manual to explore he possibilities in detail, much more
extensive referencing of JOVIAL defined data is possible than is suggested above. The key to
this extension is that the programmer is allowed the complete BAL assembly language including
all features found in code generated by the compiler. In taking advantage of this facility it is
necessary to remember that the compiler has established conventions, and direct code sequences
must be compatible when related to JOVIAL-generated code.

The best way of learning the required conventions is to examine some JOVIAL-generated code
that performs a function similar to what is desired and transcribe it as a direct code sequence,
with appropriate changes.

3. If a DIRECT code sequence is within a FOR loop, or if the DIRECT code contains ASSIGN
statements, there is a possibility of conflict between compiler-assigned registers and user-assigned
DIRECT code registers. To avoid these conflicts, the programmer should use the RESERVE pseudo-op
to guarantee that the compiler will not assign specified registers. See Section 8, Control Pseudo-Opera-
tions, for the use of RESERVE and RELEASE pseudo-ops. An alternative method that may
be used within FOR loops is to save all registers at the beginning of the direct code sequence
and to restore them at the end. This is not effective for DIRECT code containing an ASSIGN
statement.

4. Usually, register 12 will be provided as a base register if the DIRECT statement immediately
follows an executable JOVIAL statement. Under that condition, a DIRECT statement omitting
the byte count sets the base to an address value just prior to the programmer’s BAL code; but
a DIRECT statement including the count is only assured of a base adequate to cover the number
of bytes specified by the count. DIRECT statements not following executable JOVIAL statements
cannot be assured a base register at all.

5. At the end of the direct code sequence, be sure to include a �DROP" for every �USING" within
this sequence of direct code (except register 12, which does not require this). There is no need
to load or restore any register at this time, except as noted in paragraph 3 above.

6. Items coded for �M" packing are aligned only to halfword boundaries. This means that they
must be referenced with halfword instructions such as LH. All other generated data names are
aligned to full-word boundaries, permitting instructions such as L, A, M, but often requiring
extracting and shifting after loading into a register.

7. JOVIAL provisions for presetting data are at times cumbersome, especially for character data.
Such presetting can be done within a direct code sequence in the main program under the following
restrictions.

a. Precede the presetting statements with the statements:

ZYDATA CSECT
label EQU *

where �label" represents any unique label. This preserves the value found in the ZYDATA location
counter.

b. Origin to each area with a statement of the form �ORG xxname" where xx represents
the appropriate data prefix and name is the name of a JOVIAL table or array.

c. After each ORG card image use DC & DS statements to describe the desired preset constants.

7−5NASP−9288−02H15 August 1995

d. Follow the presetting statements with the statements:

ORG label

ZYPROG CSECT

where �label" indicates the same unique label used in paragraph a. This restores the ZYDATA location
counter to its previous value.

WARNING

Adherence to this technique is required to ensure that JOVIAL-generated data is
properly aligned.

8. In addressing arrays, it is necessary to know the location of the various elements in storage.
Each element is stored right-justified in a byte, halfword, single word, or two consecutive words,
depending on field format.

byte 1−8 bits, unsigned
halfword 9−15 bits, unsigned, or 2−16 bits, signed
word 16−32 bits, unsigned, or 17−32 bits, signed
two words 33−64 bits, unsigned

The order of elements in storage is best shown by the following example of a main program array.

ARRAY BETA 2 2 2 I 32 S $

JOVIAL Subscript BAL Address

BETA ($0, 0, 0$) A1BETA

BETA ($1, 0, 0$) A1BETA+4

BETA ($0, 1, 0$) A1BETA+8

BETA ($1, 1, 0$) A1BETA+12

BETA ($0, 0, 1$) A1BETA+16

BETA ($1, 0, 1$) A1BETA+20

BETA ($0, 1, 1$) A1BETA+24

BETA ($1, 1, 1$) A1BETA+28

9. Direct code appearing in the body of a PROC (including library routines) must not change the
value of register 13. This is especially important in REENT programs.

7.5���EXAMPLE OF DIRECT CODE

The following example shows direct code used as the body of a procedure.

Statements Comments

ITEM AA F$ Item in main prog.

PROC BA$ Identifies procedure BA.

7−6 NASP−9288−02H 15 August 1995

Statements Comments

ITEM BBB F$ Item in procedure.

BEGIN Begins body of procedure.

DIRECT 30 $ Indicates direct code.

L 1,=A(A1AAA) Loads address of AAA into register 1.

L 2, =A(A3BBB) Loads address of BBB into register 2.

L 3,=A(CCC) Loads address of CCC into register 3.

B DDD Branch to end of direct code.

CCC DS F Defines CCC as fullword item.

DDD EQU * Sets up DDD as false.

JOVIAL Ends direct code.

END Ends body of procedure.

7.6���BAL DEBUG STATEMENTS USING DIRECT CODE

BAL Debug statements [see IBM Data Processing System: Debugging System User’s Manual (DEBUGG)
for format] can be inserted into a JOVIAL source program by using direct code (see Figure 7−1).

START TST DBG ST ZZ TAKE HEX DUMP OF DATA

Name Operations Operand

1 8 10 14 16 20 25 30 35 40 45 50

ITEM DD A 32 S 4 $
ITEM CC I 32 S $

DIRECT $
AO ZZ.$

JOVIAL

XX.DD=

DUMP HEX, ID AI DD $ ACC $

5.5A4 $

YY.CC=YY.CC= 64 $

ZZ.STOP $

TERM XX

I

$

FIGURE 7−1.���EXAMPLE OF DEBUG STATEMENTS USING DIRECT CODE

7−7NASP−9288−02H15 August 1995

7.6.1���Using Debug Statements

The following advantages can be gained by the use of BAL Debug statements:

1. They provide a convenient way for a programmer to print the contents of a tape, as it looks
at the end-of-job. The JOVIAL library routines do not include a tape dump program.

2. It is not necessary to program tests for conditions on which to dump. The conditional dump
statement will do this.

3. The programmer can request a trace of a section or sections of his program.

4. The programmer can define the area he wants printed in an emergency.

The following rules apply to the use of BAL Debug statements:

1. The Register-Storage Conditional Dump statement should be used with extreme caution when
referring to JOVIAL source statements. The programmer must be familiar with the JOVIAL-gener-
ated code to be able to predict which quantity will occupy a given register at a given point
in the program.

2. The rules for reference to JOVIAL statement labels and data names apply.

The programmer can also request tape prints or define emergency dumps with load-time debug statement
(preceded by a $OBJ card image).

7.7���DIRECT CODE COMPOOL REFERENCE

Normally no special precautions need be taken referencing compool from Direct Code. The compiler can
detect these references and will generate any needed PSEG card images. The exception to this is a reference
to the original (ZX-prefixed) name of a Dynamically Equated Table of an item therein. Unless the segment

is forced in with a �.b/ PSEG segnam" or reference to another, non-Dynamically-Equated, Table in the
segment, the symbols will be treated as undefined.

While use of �.b/ PSEG segnam" is more efficient and is recommended, it is also possible to use BAL PSEG
card in the Direct Code to define such symbols.

8−1NASP−9288−02H15 August 1995

8.0 CONTROL ‘PSEUDO−OPERATIONS’

Certain pseudo-operations are provided to allow programmer control over the format and content of the
listing and to specify which general registers are to be reserved from JOVIAL use in direct code.

Control pseudo-ops can be used any place in the JOVIAL program except within direct code. The RESERVE
pseudo-op has the additional restriction that it cannot be used in a FOR loop. Except for the TITLE
statement, the TABLE statement, and the NLIST statement, they can not precede the START statement.

All control pseudo-ops must have the character sequence period-blank in line columns 1 and 2. Only one
control pseudo-op and no other JOVIAL statements may appear on a line.

8.1���EJECT PSEUDO−OP

The EJECT pseudo-op is used to eject to a new page in the JOVIAL source language listing and/or in
the generated assembly language listing.

The format of the EJECT pseudo-op is:

JOV

.b/ EJECT BAL
BOTH

JOV Eject a page in the JOVIAL source listing only.

BAL Eject a page in the generated BAL listing only.

BOTH Eject a page in the JOVIAL source listing and in the generated BAL listing.
If the field is omitted, BOTH is assumed.

8.2���SPACE PSEUDO−OP

The SPACE pseudo-op is used to space one or more lines in the JOVIAL source language listing and/or
in the generated assembly language listing.

The format of the SPACE pseudo-op is:

JOV

.b/ SPACE [number] BAL
BOTH

number One or two decimal digits specifying the number of spaces desired in the listing.
If omitted, one space is assumed.

JOV Space lines in the JOVIAL source listing only.

BAL Space lines in the generated BAL listing only.

BOTH Space lines in the JOVIAL source listing and in the generated BAL listing. If
the field is omitted, BOTH is assumed.

8−2 NASP−9288−02H 15 August 1995

8.3���NLIST PSEUDO−OP

The NLIST pseudo-op is used to suspend the listing of the JOVIAL source program and/or of the generated
BAL program. This statement may precede the START statement in the MVS version of JOVIAL.

The format of the NLIST pseudo-op is:

JOV

.b/ NLIST BAL
BOTH
JCOM

JOV Suppress the JOVIAL source listing only.

BAL Suppress the generated BAL listing only.

BOTH Suppress the JOVIAL source list and the generated BAL listing. If the field is
omitted, BOTH is assumed.

JCOM Suppress the listing of JOVIAL source as comments in the BAL listing.

8.4���LIST PSEUDO−OP

The LIST pseudo-op is used to resume listing, which was suspended because of a previous NLIST pseudo-op.
Listing can be resumed in the JOVIAL source listing and/or in the generated BAL listing.

The format of the LIST pseudo-op is:

JOV

.b/ LIST BAL
BOTH
JCOM

JOV Resume listing the JOVIAL source program only.

BAL Resume listing the generated BAL program only.

BOTH Resume listing the JOVIAL source program and the generated BAL program.
If the field is omitted, BOTH is assumed.

JCOM Resume listing the JOVIAL source as comments in the BAL listing.

8.5���SWAP PSEUDO−OP

The SWAP pseudo-op is used to suppress printing of JOVIAL warning diagnostic messages and/or BAL
possible error messages. Some selectivity is provided for suppression of BAL error messages. JOVIAL warning
diagnostics are suppressed only in the assembly language listing. If a JOVIAL diagnostic listing is generated
because of a serious error, warning messages will be printed regardless of the SWAP options specified.

The format of the SWAP pseudo-op is:

JOV

.b/ SWAP BAL �VOIDEX �PRIVOP �OTHERS�
BOTH

8−3NASP−9288−02H15 August 1995

JOV Suppress only JOVIAL warning diagnostics in the generated BAL listing.

BAL Suppress only BAL possible error diagnostics in the generated BAL listing. The
selectivity options VOIDEX, PRIVOP, and OTHERS are applicable.

BOTH Suppress JOVIAL warnings and BAL possible errors in the generated BAL listing.
The selectivity options VOIDEX, PRIVOP, and OTHERS are applicable. If this
field is omitted, BOTH is assumed.

VOIDEX Suppress printing of the possible error message: FIELD n HAS A VOID EXPRES-
SION. This option applies only if BAL or BOTH was specified or assumed.

PRIVOP Suppress printing of the possible error message: USE OF A PRIVILEGED OPERA-
TION. This option applies only if BAL or BOTH was specified or assumed.

OTHERS Suppress printing of all other BAL possible error messages. This option applies
only if BAL or BOTH was specified or assumed. Any combination of VOIDEX,
PRIVOP, and OTHERS may be specified in any order. If all three are omitted,
VOIDEX and PRIVOP are assumed.

8.6���RESERVE PSEUDO−OP

The RESERVE pseudo-op guarantees that the programmer may use registers in DIRECT code without
having conflicts with JOVIAL-assigned registers. The RESERVE pseudo-op should be used when ASSIGN
statements appear in a DIRECT sequence, and when a section of DIRECT code appears within a FOR
loop.

The format of the RESERVE pseudo-op is:

.b/ RESERVE register-number [register-number] ...

register-number A 1-digit decimal number specifying a register to be reserved from JOVIAL use
in direct code.

RESTRICTIONS: The following restrictions apply to the RESERVE pseudo-op:

1. Only registers 2 through 9 may be RESERVED.

2. The RESERVE pseudo-op cannot be used within a FOR loop or within direct code.

3. Though it is legal to RESERVE as many as eight registers, it is advisable to RESERVE only
the minimum number of required registers. The more registers that are RESERVED, the better
the chance that inefficient code will be generated by JOVIAL.

4. The RESERVE pseudo-op has no effect on JOVIAL’s assignment of registers as data bases because
these are dropped before entering a DIRECT sequence.

8.7���RELEASE PSEUDO−OP

The RELEASE pseudo-op is used to free a register that was previously RESERVED from JOVIAL use.

The format of the RELEASE pseudo-op is:

.b/ RELEASE register-number [register-number] ...

8−4 NASP−9288−02H 15 August 1995

register-number A 1-digit decimal number specifying a register to be reserved for JOVIAL use.
All RESERVED registers need not be RELEASED at once.

8.8���PSEG PSEUDO−OP

The PSEG pseudo-op provides a means of forcing the compiler to recognize an otherwise unreferenced
compool segment. Under MVS, all data-names referenced on a PSEG will appear in the INDEX, and XREF
output if present.

The format of the PSEG pseudo-op is:

.b/ PSEG data-name [data-name] ...

data-name The name of a TABLE, ITEM, STRING, ARRAY, or compool segment.

RESTRICTIONS: The following restrictions apply to the PSEG pseudo-op.

1. If a name cannot be found in the compool, a warning is issued and the compiler proceeds to
the next name (if present).

2. If there is no compool, or an undecipherable field is found, a warning is issued and the rest
of the card image is ignored.

3. If the name of a dynamically-equated table or one of its items appears, it will be treated as
undefined. See the section on the EQUATE statement for more detail.

4. More than one reference to a single segment is permitted, so this may be used to force names
into XREF output under MVS.

8.9���DUMP PSEUDO−OP

The DUMP pseudo-op allows the user to include requests for debugging services without resorting to DIRECT
code.

The format of the DUMP pseudo-op is:

DUMP
DUMPC

.b/ DUMP DUMPR Operand
DUMPE

Operand A debug pseudo-op operand acceptable to the BAL Assembler.

RESTRICTIONS: The following restrictions apply to the DUMP pseudo-op:

1. The first field (�DUMP") must terminate in or before column 8.

2. The second field (�DUMP", �DUMPC", �DUMPR", or �DUMPE") must not start before column
10.

3. The third field (operand) must be separated from the second field by at least one blank, and
must terminate in or before column 66.

4. The compiler provides a label for the debug request. This label is in the operative code section
of the program, and appears after the last preceding operative statement, and at or before the
next succeeding operative statement.

8−5NASP−9288−02H15 August 1995

5. Use of any BAL op-codes other than those listed will lead to either JOVIAL or BAL serious
errors.

8.10���RELOAD PSEUDO−OP

The RELOAD pseudo-op allows the user to force reloading of any registers currently containing base values
for Dynamic Equates. It is intended for use where the program has modified base-item values out-of-line
where the compiler will not detect it and provide automatic reloading.

The format of the RELOAD pseudo-op is:

.b/ RELOAD

8.11���TITLE PSEUDO−OP

The TITLE pseudo-op allows the user to specify up to 48 characters of title information to appear in
his JOVIAL and BAL listing header lines. Unlike the other pseudo-ops, the TITLE pseudo-op may precede
the START statement. For this reason, it must be entered in fixed columns.

The format of the TITLE pseudo-op is:

1 6

Col 1 6 3

.b/ TITLE variable text for header

8.12���HOOK PSEUDO−OP

The HOOK pseudo-op allows the user to create an entry point to the program.

The format of the HOOK pseudo-op is:

. b/ HOOK name

name A 1−6 character alphanumeric symbol, the first character of which is a letter.

The code generated by the HOOK pseudo-op is as follows:

ZH name DS OH
ENTRY ZH name

8.13���INCLUDE PSEUDO−OP

The INCLUDE pseudo-op allows the user to include source statements from a source library into the program.

The format of the INCLUDE pseudo-op is:

.b/ INCLUDE member-name

member-name The name of the member of the source library (defined on the //SYSLIB DD
statement) to be included.

8−6 NASP−9288−02H 15 August 1995

RESTRICTIONS: The following restrictions apply to the INCLUDE pseudo-op.

1. It is available on MVS JOVIAL only.

2. Included members may contain INCLUDE statements, but the nesting level may not exceed
15.

3. An included member cannot include itself, however remotely.

4. Included DIRECT code must be terminated by a �JOVIAL" bracket in the included member.

NOTE

See Section 10 for examples and explanation of JCL requirements when using
the INCLUDE pseudo-op.

8.14���TABLE PSEUDO−OP

The TABLE pseudo-op is used to reallocate memory work space in Phase 1 of the JOVIAL compiler. If
used it should allow the user to reduce the MVS region size needed for a given program.

The TABLE pseudo-op must precede the start statement.

The table names and values to be entered, for a given program, will be listed by JOVIAL after each successful
completion.

The format of the TABLE pseudo-op is:

. b/ TABLE name value [name value] ...

name Name of a JOVIAL work table to be changed.

value A two or three digit number.

9−1NASP−9288−02H15 August 1995

9.0 HELPFUL HINTS FOR JOVIAL USERS

The purpose of this section is to aid the programmer in avoiding potential debugging problems and to
write more efficient JOVIAL code. Readers may submit contributions to this section for publication in
future editions of the JOVIAL User’s Manual.

Following is a list of suggestions for programming in the JOVIAL Language.

1. Do multiply by powers of 2 where appropriate, including negative powers of 2 (exp *.25A2 will
give better code than exp/4, but do not try exp *.25 as this is floating point and not interpreted
as a power of 2).

Do be careful when you wish fractions truncated.

ITEM II I 32 S $
ITEM AA A 32 S 2 $

II = 7 $
AA = II/4 $

�Since the dividend was a full word integer the quotient has no fractional bits and AA equals
1.0."

AA = II *.25A2 $

�Here the generated code is L 1, A1II ST 1, A1AA which is economical and gives the more
precise answer of AA equals 1.75."

2. Do use MVI procedure calls and explicitly specify every argument in every call. Expect nearly
perfect in line code when length is constant, a reasonably efficient subroutine call when it is
not.

3. Recognize that, almost universally, you will be penalized code-wise if you make byte packing
less than 8 bits, medium packing other than I 16 S or A 16 S, or normal packing other than
32 or 64 bits. Single-bit dense-packed status items are very efficient, especially if not subscripted;
otherwise avoid dense-packing.

Dense-packed items which will be used in arithmetic computations should be right-justified in
the word whenever possible. This is not necessary where the primary use is a compare against
a constant; i.e., for use in �IF STAT EQ V(MAYBE) $" it makes no difference whether we define
STAT as:

ITEM STAT S 2 V(YES) V(NO) V(MAYBE) n 11 D $

or

ITEM STAT S 2 V(YES) V(NO V(MAYBE) n 30 D $

4. Note that JOVIAL will generate an LPR instruction only in response to an absolute expression
and will truncate leading magnitude bits only in response to violation of paragraph 3.

5. However, remember that small fields are occasionally appropriate since, as a general rule, if
less integer bits are declared in source fields, results will be permitted more fractional bits without

9−2 NASP−9288−02H 15 August 1995

truncation. Also, when comparing items in different field sizes, CLC can be used if, for example,
one field is H3, dense packed, on byte boundaries, and the other is I 20 U, unpacked.

6. Note that �ADR(name)+constant" or �LOC(name)+constant" is processed as a single term when
the rules of precedence permit and is therefore preferred whenever usable.

7. Note that at any time small positive constants are preferred over small negative constants.

Bad example:

TMP = TMP+12 $
LA 1,12
A 1,A1TMP
ST 1,A1TMP

MVI(TMP−4,8,LONGH) $
L 1,A1TMP
SH 1,=X’0004’
MVC 0(8,1),A1LONGH

Good example:

MVI(TMP+8,8,LONGH) $
L 1,A1TMP
MVC 8(8,1),A1LONGH

TMP = TMP+12 $
LA 1,12
A 1,A1TMP
ST 1,A1TMP

MVI(LOC(TABL)+17,8,LONGH) $
MVC A1TABL+17(8),A1LONGH

8. Review the following special procedure summary:

MVC � always moves 1−256 bytes, loss of coding efficiency if any arguments are omitted in
any call.

MVI � always moves 1−8 bytes, loss of coding efficiency if any arguments are omitted in any
call.

CLC � always compares 1−256 bytes, serious diagnostic if arguments are omitted.

CLCI � always compares 1−8 bytes, serious diagnostic if arguments are omitted with constant
length field, warning diagnostic and possible unexpected results if arguments are omitted with
other than constant length field.

NC/OC/XC/TR � always execute the appropriate 370 instruction with length of 1−256 bytes,
serious diagnostic if arguments are omitted.

NI/OI/XI � execute NC/NI/OC/OI/XC/XI instructions with length of 1−8 bytes, serious diagnostic
if arguments are omitted with constant length field. These calls should be used with variable
length field only if procedure is declared in program or on library and missing arguments cause
diagnostic and invalid results.

9. Note that for all these calls, if an address expression includes a small (1−999) positive constant,
it is almost always cheapest to write the constant as the last term of the argument expression
in the procedure call.

10. Note also, for variable length MVC/CLC/NC/OC/XC/TR, if a small positive constant is involved
it should be the last term of the length expression. This is especially advantageous if the constant
is one.

9−3NASP−9288−02H15 August 1995

11. Review all references to Table ME in your programs. Previously, it was good coding practice
to use MEMST or MESTH rather than MVI, MVT, or CLCI. Now, the best coding practice is
to use MVI, and CLCI, while MVT still does not provide good code.

Note most references to MESTR should be changed. If MVI and CLCI are inappropriate MESTH
will almost accomplish the desired result with much less code than MESTR.

12. Avoid statement labels and GOTOs. Use of IF and IFEITH/ORIF with BEGIN−END brackets
is almost always more efficient.

13. Avoid excessive use of CLOSEs and PROCs, especially those called only once. In-line code can
save considerable overhead.

14. Use extreme caution when combining CLOSEs and FOR-loops. The following example will compile
correctly but will cause terrible program bugs when executed.

FOR A =...$
BEGIN �A"
.
.
.
GOTO KLOZ $
.
.
.
END �A"
.
.
.

CLOSE KLOZ $
BEGIN
.
.
.
FOR A =...$
.
.
.
END

After GOTO KLOZ $, the value of A has been destroyed. A PROC should be used instead.

15. When a data address is contained in an item, it may be more economical to declare a dummy
table and use the item as a Dynamic Equate base than to use the item explicitly.

EXAMPLE:

MVC (ITUM + 3,...) $
MVC (ITUM + 10,...) $
�.
�.
�.
MVC (ITUM + 127,...) $

could be recoded as:

TABLE DUM R 1 1 $ BEGIN END

9−4 NASP−9288−02H 15 August 1995

EQUATE ITUM/DUM $
MVC (LOC(DUM) + 3,...) $
MVC (LOC(DUM) + 10,...) $
�.
�.
�.
MVC (LOC(DUM) + 127,...) $

with a saving of a Load and an Add on each MVC in return for a single load at the beginning.

16. Do not intermix CLOSE and PROC declarations, as the literal pool with be dumped extra times.

Bad: Main Program Good: Main Program

PROC CLOSE

CLOSE CLOSE

PROC PROC

CLOSE PROC

PROC PROC

6 literal pools only 4 literal pools

17. When extensive subscripting is needed, define a FOR−Loop and subscript with the FOR−Index,
instead of using an item subscript. Often even more savings can be achieved using a Dynamic
Equate set to the desired entry, and eliminating the subscript entirely.

18. Do not mask data being accessed when same or more restrictive masking will be applied in
store operation.

BIT ($X, 3$)(YY)=BIT ($29, 3$)(ZZ) $ is less efficient than:
BIT ($X, 3$)(YY)=ZZ$

19. Make good use of DIRECT code for presetting tables (in non-reentrant programs) instead of
using operative statements.

20. Watch out for PROCs which may reset a Dynamic Equate base item. Unless the item name
appears as an output parameter of the PROC, follow the call with a �.RELOAD" to insure base
register integrity.

21. When a FOR-loop index is used only for loop control and NOT as ‘an index, coding:

FOR A = 1, 1, ITUM $

is more efficient than coding:
FOR A = 0, 1, ITUM−1 $

where ITUM is a simple item or an unsubscripted N-packed table item.

10−1NASP−9288−02H15 August 1995

10.0 JOVIAL PROCEDURES

10.1���JOVIAL PROCEDURES

JOVIAL programs which are intended to execute under MVS should be compiled a closed programs. JOVIAL
accesses a disk-resident compool and library. The library PDT dataset is required for all JOVIAL compilations.
The compool table dataset is required only if the program being compiled requires a compool.

10.1.1���JOVIAL Compilation

An ISPF panel is provided to execute JOVIAL compilations under MVS. The panel is accessed from Option
F.B from the primary options menu. The panel appears as follows:

JOVIAL COMPILE

COMMAND ===>

ENTER JOVIAL PARAMETERS ===> INDEX,STRUC, XREF
ENTER BAL PARAMETERS ===> LIST,ANALYZ,LIBGO,LOAD

SPECIFY SOURCE LIBRARY:
�PROJECT ===> HE0110
�GROUP ===> RNASOP ===> ===> ===>
�TYPE ===> SOURCE (LIB OR SOURCE)
�MEMBER ===> DTOA
READ PASSWORD ===> (ONLY IF REQUIRED)

LIST FILEID ===> (LIST OF MEMBERS TO COMPILE)

ASSEMBLER TYPE ===> HOSTBAL (9020BAL OR HOSTBAL−CONTAINS 370 INSTR)
SAVE OBJECT ===> YES (YES OR NO−USE WITH CARE)
INCLUDE LIBRARIES REQUIRED? ===> YES (YES OR NO)
PRINT OUTPUT ===> YES YES OR NO)

COMPOOL REQUIRED? ===> LIB ROUTINES REQUIRED?
SPECIFY COMPOOL (OPTIONAL): ===> YES (YES OR NO)
�PROJECT ===> HE0110
�GROUP ===> RNASOP

The following JOVIAL parameters can be specified:

� INDEX � will cause a cross reference listing to be provided.

� NOINDEX � will suppress the cross reference listing. If neither INDEX nor NOINDEX is coded,
INDEX is assumed.

� SYNCK � will cause Phase 1 diagnostics to be listed in line with the JOVIAL listing. WARNING:

If this option is used, JOVIAL quits after Phase 1.

� STRUC � will cause the JOVIAL listing to be formatted according to the rules of structured

programming.

� XREF � will cause JOVIAL XREF card images to be produced.

10−2 NASP−9288−02H 15 August 1995

Default JOVIAL parameters are INDEX, STRUC, and XREF.

The following BAL parameters can be specified.

� LIST � causes a program listing to be produced.

� PUNCH � causes an object module to be produced.

� ANALYZ � causes a cross-reference listing to be produced.

� XREF � causes XRF data to be produced.

� PUNCHC � causes referenced compool segments to be assembled, one assembly per segment.

� LISTD � causes the compool DSECTs to be listed.

� LISTP � causes compool segments assemblies to be listed.

� PUNCHS � this option is ignored.

� INDEX � this option is ignored.

� LOAD � causes an object module to be produced.

� LIBGO � causes LIB card images to be included in the object module.

Default BAL parameters are LIST, ANALYZ, LIBGO, and LOAD.

The source library specifies the JOVIAL source. The library type must be either LIB or SOURCE. Additional
libraries can be specified in GRP2, GRP3, or GRP4. These libraries must have the same project and type
as specified for the first library. Multiple compiles may be performed by leaving the member name blank
and supplying a CMS file identifier in the form FILENAME, FILETYPE, FILEMODE which contains a
list of members to be compiled. These members should exist in the library specified as the source library.
If the ISPF library containing the JOVIAL source is read protected, the read password for the CMS minidisk
containing the library must be entered.

The assembler type must be specified as 9020BAL or HOSTBAL (HOSTBAL includes 370 instructions).
Specify YES to object from the assembly. Specify YES to have the output printed.

If a compool is required for the JOVIAL compilation, enter YES, otherwise specify NO. If the compool
needed for compilation is other than the default (XXXXXXXX.YYYYYYYY.CTAB where XXXXXXXX is the
source project and YYYYYYYY is the source group), specify the appropriate project and group.

If include libraries or library routines are required, enter YES in the appropriate fields, otherwise enter
NO. If YES is specified for either, the following panel will be displayed:

JOVIAL INCLUDE LIBRARY

COMMAND ===>

ADDITIONAL INCLUDE LIBRARIES AND PDT DATA SETS

SPECIFY INCLUDE LIBRARIES (FULLY QUALIFIED OS DATA SET NAME) :

DSNAME1 ===> INCLIB1

DSNAME2 ===> INCLIB2

DSNAME3 ===>

SPECIFY ADDITIONAL PDT DATA SETS (FULLY QUALIFIED OS DATA SET NAME) :

DSNAME1 ===> ASUP.PDT.LIB001

DSNAME2 ===>

10−3NASP−9288−02H15 August 1995

You may specify up to three MVS cataloged datasets for the include libraries which will be concatenated
in the SYSLIB DD statement. You may also specify two MVS cataloged datasets for library routines which
will be concatenated in the SYSLIBPDT DD statement. The JOVINC and LPDT datasets are already included
and do not need to be entered here.

10.1.2���Deleted

10.2���DELETED

10.2.1���Deleted

10.2.2���MVS Region Size

The region size needed for JOVIAL, under MVS, may now be reduced by the user with information supplied
by the compiler. At the end of each successful completion, JOVIAL will tell the user if the requested region
was too small, reasonable, or too large. The compiler will also list the change in region size possible for
this program with this compool.

JOVIAL will also produce a listing of new pseudo operation statements that should be entered before
the START statement the next time this program is run. The .TABLE statements are free format but
must contain a period in column one. The statement should be entered as listed. They are used to reassign
internal work space used by the compiler and should allow a further reduction in the required region
size.

10.2.3���Compool Data Sets

The compool provided for use under MVS consists of three disk-resident data sets. The TAB data set includes
the compool directory and the data declaration tables. The reserve (RSV) data set contains the compool
reserves of the form �

EXTRN ZXNAME

ZXNAME DSECT....

The object data set contains an object module for each compool segment. It is used by the linkage editor
to resolve external references to the compool segments. Table 10−1 describes the compool data sets.

TABLE 10−1.���COMPOOL DATA SETS

Data Set Name Data Set Description

XXXXXXXX.YYYYYYYY.CTAB Compool Tables Data Set. Required by the JOVIAL compiler.

XXXXXXXX.YYYYYYYY.CRSV Compool Reserves Data Set. Required by the BAL assembler.

XXXXXXXX.YYYYYYYY.COBJ Data Set of Compool Segment Object Decks Required by
the MVS linkage editor.

YYYYYYYY = Group name

XXXXXXXX = Project name

10.2.3.1���TAB Data Set

a. Name � XXXXXXXX.YYYYYYYY.CTAB

10−4 NASP−9288−02H 15 August 1995

b. Organization � partitioned

c. Record Format � undefined

d. Blocksize � 3456 bytes

10.2.3.2���RSV Data Set

a. Name � XXXXXXXX.YYYYYYYY.CRSV

b. Organization � partitioned

c. Record Format � undefined (may be treated as if it were FB, LRECL = 80).

d. Blocksize � 3520

10.2.3.3���Object Data Set

a. Name � XXXXXXXX.YYYYYYYY.COBJ

b. Organization � partitioned

c. Record Format � fixed blocked

d. Blocksize � 2240 bytes

e. Logical Record � 80 bytes

10.3���DELETED

10.3.1���Deleted

10.3.2���Generating a Compool

An ISPF panel is provided which executes JOVIAL in the compool-generation mode. The panel is accessed
from Option G.D. from the primary options panel.

COMPOOL EDIT

COMMAND ===>

ENTER THE LEVEL AT WHICH THE COMPOOL EDIT IS TAKING PLACE;
LEVEL ===> R D DEVELOPMENT

R RELEASE

ENTER THE COMPOOL ID ===> COMP0110

SPECIFY COMPOOL SOURCE LIBRARY:

��PROJECT ===> HE0110
��GROUP ===> NASOP (NAME ONLY � DO NOT PREFIX WITH LEVEL)

ENTER INFORMATION FOR THE COMPOOL EDIT DATASET:
��UNIT ===> 3380 (3380 OR SYSDA)
��VOL SER ===> MD0001

This panel invokes the JOVIAL compiler to compile the compool segments. A new compool id will be
created from the compool id specified on the panel. Specify the library level (development or release) at
which the compool edit is taking place. The compool id should be a valid name (up to eight characters

10−5NASP−9288−02H15 August 1995

in length) which can be used to reference the compool which is created. Specify the unit and volume serial
of the disk which will contain the compool dataset. The compool project name is the project name of
the compool items. The compool group name is the group name of the compool items.

10.3.3���Deleted

10.4���DELETED

10.4.1���Deleted

10.4.2���Deleted

10.4.3���Deleted

11−1NASP−9288−02H15 August 1995

11.0 JOVIAL COMPILER

11.1���COMPILER INPUT

Figure 11−1 shows the flow of input of the compiler and the types of output produced by the compiler.

11−2 NASP−9288−02H 15 August 1995

Input

MVS

Compool
Dataset

Diagnostic
messages

Compiler Library
Dataset

JOVIAL
source

program

JOVIAL
index of
symbolic
names

Assembler

BAL
Source
Code

(Optional)

FIGURE 11−1.���COMPILER INPUT/OUTPUT FLOW

11−3NASP−9288−02H15 August 1995

Programs written in the JOVIAL language are the primary input to the compiler. If a compool is requested,
the compiler reads in the compool from the compool dataset. In addition, the compiler reads in tabular
information from the library dataset, whether or not a library routine is requested by the source program.

The library is described in detail in the IBM Processing System: Library User’s Manual (LIBRARY). Compool
and the compool edit program are described in the IBM Data Processing System: Compool Edit User’s
Manual (CMPEDT).

11.2���FUNCTION OF THE COMPILER

The compiler translates JOVIAL source programs into BAL for subsequent processing by the assembler
and, when necessary, issues diagnostic messages. The compiler also produces a listing of the JOVIAL source
programs.

The translation is performed in four phases (I, IIA, IID, and III), under supervision of the compiler coordinator.
In Phase I, the JOVIAL source program statements are validated, listed on the system output unit, and
processed into a canonical form (an irreducible, ordered representation), which is placed on a work file
as input to Phase IIA. Further, the BAL coding required for storage-allocation requirements of the source
program is placed on the primary work file. In Phase IIA, BAL coding is generated for expressions, linkage,
and logic from Phase I, is placed on a second work file as input to Phase IID. The necessary BAL code
for storage allocation of temporary results is added to the primary work file. In Phase IID, BAL code
is generated from loop control and subscripting. The files for this phase are processed ina fashion similiar
to that of Phase IIA. In Phase III, the BAL coding generated in the preceding phases is altered (as needed)
to obtain optimization, registers are assigned, diagnostic messages are produced, and the coding is edited
to produce a complete BAL source program which is added to the primary work file for submission to
the assembler.

11.2.1���Compiler Coordinator

The major function of the coordinator is to tie together the compiler phases and to direct compilation.
The coordinator communicates directly with MVS and calls in the phases, as needed from disk. It also
controls all I/O operations (including reads, writes, and repositions) that the phases request.

At the start of compilation (start of INDEX under MVS), after allocating storage for all relevant compiler
tables, the coordinator reads the procedure descriptor table from the library dataset into the library portion
of the procedure table. To the compiler, this table acts as a directory of the routines available on the
library dataset and provides parameter requirements for each routine.

If errors are detected during this initialization, e.g., too little storage, an error message is issued and the
compilation is terminated. These messages, which are printed on SYSOUT/SYSPRINT are self-explanatory,
and are therefore not listed in detail in this manual.

If a fatal or major error (one that halts compilation) is found during compilation, control is passed to
the diagnostic processor, which places all source statments containing errors (and their corresponding diagnostic
messages) on the system output unit. The diagnostic processor then returns control to the monitor, which
goes on to the next job. If compilation is completed successfully, or if the programmer requests an assembly
regardless of serious errors, the coordinator passes control to the monitor, which then gives control to
the assembler.

11.2.2���Phase I

Phase I performs four major functions. It scans the JOVIAL source program, identifies the syntactic elements
of each statement, and generats diagnostic codes for any syntactically incorrect statements; it builds the
Process File, which contains input for each of the succeeding phases; it constructs tables of information
that will be needed in subsequent phases; and it allocates storage for all program items, tables, arrays,
and indexes.

11.2.2.1���Scan.���Phase I scans the source program on three levels. It scans each statement character-by-
character to validate the characters and to identify its elements. Next, it makes an element-by-element

11−4 NASP−9288−02H 15 August 1995

syntactic scan of the entire statement. It also scans the entire source program to identify bracketing, nesting,
transfer points, etc.

11.2.2.2���Tables.���Phase I constructs seven basic tables: data, dimension, label, procedure, switch, block,
and base.

The data table contains the names and descriptions of all items, strings, tables, arrays, and parameter
items defined in the source program. The table also includes compool data names and descriptions when
a compool is requested. The data table is built and used in Phase I.

The dimension table contains the products of the dimensions of any arrays defined in the data table. It
also holds information concerning strings (i.e., skip factor, number of beads per word, and number of
bytes per entry). It remains in storage through Phase IID.

The label table includes all statement names referred to or defined in the source program. This table
remains in storage for Phase IIA, which uses it to process GOTO canonical forms.

The procedure table is built from the scanning of procedure/function headings and contains all information
needed to generate linkage coding. All functions and procedures found in the source program, as well
as the procedure descriptor table obtained from the library PDT, are recorded here.

The switch table includes the name and description of the item to be tested by each item switch. This
table is used when item switch calls are processed in Phase IIA.

The block and base tables are built for Phase III. The block table contains all data names and their relative
locations in storage. Each name is assigned a number that indicates the block within which the name
is located. (A block is a collection of contiguous data covered by one regiser.) The base table holds the
address constant that is to be loaded into a register when referencing data in each block.

11.2.2.3���Process File.���This file contains the principal information processed by the compiler, and
is passed from phase to phase using the work files. The file consists of seven types of process items:

1. The statement process item contains an original source statement and a compiler-generated statement
number.

2. The canonical form process item presents, in coded form, information given in a statement process
item.

3. The diagnostic process item may furnish one or more diagnostic codes that relate to a statement
process item.

4. The BAL processes item holds a line of precursor code or a line of actual BAL code.

5. The blocking process item indicates the start of a block of coding. This is the point in the executable
program to which transfer of control might be made or at which consecutive instruction sequence
resumes after an interrruption. It is necessary to reload certain registers at this point. Such
points include referenced statement labels, the beginning of closed subroutines, after DIRECT
code, etc.

6. The table information entry indicates the type of each variable and its frequency of use. This
is used to facilitate the allocations of base registers.

7. The Data Definition item contains information on data and procedure declarations.

All process items start with a standard field of four bytes. The first byte identifies the type of process
item. The second contains a process code that directs the production of the final output. The third and
fourth bytes are a binary count of the number of bytes in the process item.

11.2.2.4���Storage Assignment.���The final processing by Phase I is to produce the information needed
by the assembler for storage assignment and to place this information on the primary work file. The primary

11−5NASP−9288−02H15 August 1995

work file contains the output of the compiler (BAL source program) and is used as input to the assembler.
Here, Phase I performs the following functions:

1. Issues the START statement for the assembler.

2. Issues all CSECT pseudo-operations, labeled: ZYPROG (to define main-line coding), ZYPROC
(to define procedure and function coding), and ZYDATA (to define data areas).

3. Copies, from the compool dataset, the BAL coding needed to reserve the common storage area.

4. Issues BAL pseudo-operations to allocate storage for all declared tables, arrays, items (except
for dummy parameters), and FOR indexes.

5. Issues BAL code for initial value constants.

11.2.3���Phase IIA

Phase IIA generates code for expressions, calls, and logic statements, transferring to the appropriate subprocessor
for actual code generation. Linkage coding is inserted between input expression evaluation and output
parameter manipulations. For logic, conditional tests are inserted between the expression evaluations in
the conditional statement.

The expression processor produces the coding required to evaluate expressions in any JOVIAL statement.
This is accomplished in three scans. The first scan eliminates redundancy in common subexpressions and
determines the order in which the expressions should be evaluated; the second finds when conversion and
data unpacking is needed; and the third produces the BAL code.

The linkage processor, which is part of the first scan of the expression processor, produces calling sequences
in BAL code for procedure, function, closed program, and closed-compound procedure calls. It also provides
linkage for switch calls and simple branching coding.

The logic processor, also part of the first scan of the expression processor, generates coding for switch
declarations and analyzes and generates coding for conditional statements.

11.2.4���Phase IID

The basic function of Phase IID is to produce code to control FOR loops in the object program. Phase
IID also generates code to address subscripted data names. In each case, this phase attempts to produce
optimum coding. Phase IID processes the input file segment by segment, rather than statement by statement
(as in Phase IIA). A segment is as much of the Process File as the compiler can handle for analysis.

11.2.5���Phase III

This phase edits the Process File to produce BAL output that can be processed by the assembler. The
editing includes the algorithmic assignment of certain registers, the altering of object code when required
to optimize register assignments, and the issuing of diagnostic messages.

NOTE

General registers 0 and 1 are used as accumulators; 2 through 10 are used for
three functions-data addresses, indexing, and temporary storage of partial results;
11 is used as a spill register (when all other registers are busy); 12 is used as
a base register for the block being coded; 13, 14, 15 are used for linkage (14
is also used as an accumulator). Floating-point registers 0 and 6 are used as accumula-
tors; 2 and 4 are used for temporary storage of partial results.

Finalizing the BAL source code in each block of the coding may cause a LTORG to be issued at the end
of the block. The LTORG establishes the starting point for all literals defined within the block. This also
permits literals to be addressed by the register covering the block’s execution.

11−6 NASP−9288−02H 15 August 1995

The editing portion of Phase III transforms process item formats into BAL card images, removing any
embedded blanks within the operand field of the instruction, suppressing high-order zeros on addends,
etc.

11.3���SUCCESSFUL COMPILATION OUTPUT

The compiler compiles the JOVIAL source program and produces diagnostic messages reflecting conditions
occurring during compilation. Compiler output, including diagnostic messages, is placed on the primary
work file when compilation is completed. Further, the JOVIAL source program is listed on the system
output unit. The programmer may request several optional forms of compiler and assembler output by
specifying the desired options.

As an aid to the programmer, the original JOVIAL statements appear as comments in the BAL listing
prepared by the assembler, when requested, with each statement followed by its BAL coding unless the

. b/ NLIST JCOM is used.

If the .b/ NLIST JCOM pseudo-op is used, JOVIAL statements following the .b/ NLIST JCOM will not appear
as comments in the BAL listing. However, the statement number of the JOVIAL statement which would
precede the BAL code is placed in the sequence number field of the BAL code.

11.3.1���XREF Card Image Output

When the XREF option is selected, the compiler produces card images for input to XREF and other similar
programs. These card images all start with .XRFn (n a numeric character) in columns 1−5.

The formats of the .XRF3, .XRF4, and .XRF7 card images, output under MVS, are described in the XREF
User’s Manual. The MVS .XRF3 card image has, additionally, the compool name starting in column 24
and the library name starting in column 36.

Two additional card images, XRF8 and XRF9, will appear in MVS output.

The XRF8 card image will indicate the space available in the calling program for arguments, register
save, etc. for each called library routine. The format of this card image is:

Start Column Number of Columns Contents

1 5 .XRF8

6 6 Calling prog name (as other XRF card images)

13, 25, 37, 49, 61 8 Called libe rtn name (left just., trailing blanks)

21, 33, 45, 57, 69 4 Size needed (EBCDIC decimal bytes, rt just. with leading
zeros)

The last card image may have 1−5 fields.

The XRF9 card image will contain references to included source members. The format of this card is:

Start Column Number of Columns Contents

1 5 .XRF8

6 6 Calling program name

14, 23, 32, 41, 50, 59 8 Name of included source member.

11−7NASP−9288−02H15 August 1995

The last card image may have 1−6 fields.

11.4���COMPILER SYSTEM REQUIREMENTS

The JOVIAL compiler requires a certain amount of peripheral I/O equipment in order to function.

The I/O requirements to run under MVS are as follows:

DDNAME R/O* Type Notes

SYSPRINT R PRINTER SYSOUT

SYSIN R DASD JOVIAL source code

SYSPUNCH R DASD XREF output

SYSUT1 R DASD Work space: output from compiler, input to BAL

SYSUT2 R DASD Work space

SYSUT3 R DASD Work space

SYSUT4 R DASD Work space

SYSUT5 R DASD Work space

SYSUT6 R DASD Work space

CMPTAB O DASD Required when COMPOOL is used

*R = Required, O = Optional

11.5���COMPILER DIAGNOSTICS

There are four levels of diagnostic severity: fatal, major, serious, and warning. Only the first two will
halt compilation.

A fatal error occurs only when a compiler table overflows. When the phase in which the fatal error occurred
is completed, the statement that caused the fatal error and the corresponding diagnostic message, as well
as any other diagnostics found by the compiler, are placed on the system output unit by the diagnostic
processor. Compilation is then abandoned and control is returned to the monitor.

A major error is an error which makes any further processing meaningless (for example, a nested procedure
declaration or an invalid table declaration). When this error is encountered, an internal switch is set,
but compilation continues until the phase is ended. At that time, control is transferred to the diagnostic
processor as if a fatal error has been found. Compilation stops, and control is returned to the monitor.

Serious and warning errors do not stop compilation. Normally, however, serious errors will inhibit passing
of compiler output to the assembler. Often, however, serious errors in Phase I will produce output unacceptable
to later phases, causing abrupt termination of the job, and usually a SYSDUMP. For this reason the ASSEMBLE
option should be avoided, especially during initial attempts to compile a program. The ASSEMBLE option
is aborted by any major or fatal errors. Under MVS, the COND field should be used.

When a serious error occurs, no BAL coding will be produced for the erroneous statement. Instead, the
original JOVIAL statement and a diagnostic message will be listed.

11−8 NASP−9288−02H 15 August 1995

If any errors occur, those statements causing errors and the corresponding diagnostic messages are placed
on the system output unit. Warning errors do not inhibit assembly, but may cause unexpected results.

The diagnostic messages issued are listed in Table 11−1 alphabetically, indicating their severity: fatal,
major, serious, or warning. Words in a message that may vary from situation to situation (e.g., the name
of a table or an item) are denoted by �******". If the variable word is the first word of the message,
the message is listed alphabetically by the second word. The 2-character alphanumeric diagnostic code
is given in parentheses after each message. This code is primarily for internal compiler use.

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES

A CLOSE ENDED WITH THE EXIT OF AN IF PENDING (33)

Serious.

A CLOSE MAY NOT BE THE EXIT OF AN IF (24)

Serious

A PRESET CONSTANT MUST BE PRECEDED BY A TABLE ITEM DECLARATION (AA)

Serious. Initial values can be assigned only to table items.

A PROC ENDED WITH THE EXIT OF AN IF PENDING (2E)

Serious.

A STATUS CONSTANT MAY NOT BE DEFINED BY A PARAMETER ITEM (AE)

Serious.

A SYMBOL HAS MORE THAN SIX OR LESS THAN TWO CHARACTERS (18)

Serious.

ALL STATUS VALUE CONSTANTS IN THIS STATUS ITEM ARE NOT UNIQUE (B7)

Warning. Status value constants within an ITEM statement must be unique although there may
be duplicates among different items. All references to this constant will yield the first value.

ARRAY ITEM IS USED WITH INCORRECT NUMBER OF SUBSCRIPTS (65)

Serious. The number of subscripts used to refer to an item in an array must equal the number
of dimensions in the array.

***** ARRAY OR STRING MUST BE SUBSCRIPTED (F9)

Serious.

ARRAY MAY NOT CONTAIN STATUS ITEMS (C2)

Major.

ASSIGN STATEMENT NOT WITHIN DIRECT/JOVIAL BRACKETS (A5)

Serious. An ASSIGN statement has meaning only in direct code.

11−9NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

****** BAD OP CODE. POSSIBLE MACHINE OR COMPILER ERROR (F4)

Serious.

BIT/BYTE MAY NOT BE USED IN AN EXCHANGE STATEMENT (86)

Serious.

BOUNDARY RESTRICTIONS VIOLATED IN THIS ITEM DECLARATION (CA)

Major. In programmer-allocated ITEM statements, the programmer must ensure that: (1) integer
are fixed point items and EBCDIC or ASCII items of four or fewer characters do not cross word
boundaries (2) EBCDIC and ASCII items of more than four characters do not cross two word boundaries
and (3) floating point items are stored in fullwords.

BRANCH ADDRESS IN A SWITCH DECLARATION IS NOT A STATEMENT LABEL (7F)

Serious.

CALLED PROCEDURE/FUNCTION IS NOT REENTRANT (88)

Serious.

CLOSED STATEMENT NOT FOLLOWED BY A BEGIN STATEMENT (9C)

Warning. A closed compound procedure has no heading. Body must be enclosed in BEGIN−END
brackets. BEGIN assumed.

CLOSE STATEMENT NOT PRECEDED BY A TRANSFER OR CLOSE (15)

Warning. Closed compound procedures must be called, not executed in line.

COMPARISON REQUIRES MORE SIGNIFICANCE THAN ONE MACHINE WORD (78)

Warning.

COMPILER RECORD EXCEEDED. STATEMENT IS TOO LONG (90)

Serious.

COMPILER TABLE EXCEEDED. STATEMENT IS TOO LONG OR COMPLEX (75)

Serious. Suggest segmenting statement.

****** COMPILER TABLE OVERFLOWED. COMPILATION ABANDONED (FF)

Fatal. Suggest segmenting program, or running with more storage (see Appendix G)

COMPOOL REQUESTED BUT NO TAPE ATTACHED (23)

Serious. The compool tape must be on an attached input/output unit if a compool is requested.

COMPOOL VARIABLE APPEARED BEFORE ITS DYNAMIC EQUATE STATEMENT (38)

11−10 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Serious.

CONSTANT SET INTO AN ENTRY MUST BE ZERO (83)

Serious.

****** DATA NAME IS NOT UNIQUE (F7)

Major. May also appear as serious diagnostic.

DIVISION WILL PRODUCE A QUOTIENT WITH MORE THAN 31 INTEGER BITS (77)

Warning. Quotient will be rounded.

DOUBLE WORD CONSTANT TO CONSTANT COMPARE IS INVALID (82)

Serious.

DOUBLE WORD EBCDIC OR ASCII ITEM COMPARED WITH SIGNED ITEM (68)

Serious.

DUPLICATE TABLE DECLARED WITHOUT ORIGINAL TABLE DECLARATION (94)

Major.

DYNAMIC EQUATE BASE ITEM INVALID OR IN INVALID TABLE (DD)

Serious.

EBCDIC OR ASCII ITEM APPEARS IN A FLOATING POINT EXPRESSION (66)

Serious.

EBCDIC OR ASCII ITEM APPEARS IN AN EXPONENTIATION EXPRESSION (67)

Serious.

****** ELEMENT INVALIDLY PLACED IN EQUATE STATEMENT (F2)

Serious.

END OF INPUT FOUND BEFORE THE END OF A TABLE DECLARATION (C8)

Major.

EQUATE STATEMENT CONTAINS AN INVALID ELEMENT (2C)

Serious.

EQUATE STATEMENT MAY NOT BE IN A PROGRAMMER−ALLOCATED TABLE (D6)

11−11NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Serious. Table items that share storage in a programmer-allocated table are simply described by the
programmer.

****** EQUATED ITEM NOT IN THIS TABLE (F5)

Serious. Table items can be equated only to other table items in the same compiler-allocated table.

****** EXIT ALWAYS TAKEN BY A COMPARE IN THIS IF STATEMENT (F3)

Warning. Variable word will be �TRUE" or �FALSE".

FIELD FOLLOWING DIRECT ON THIS CARD WAS IGNORED (CD)

Warning. Only an ASSIGN statement can be on the same card image with a DIRECT bracket. Any
other statement is ignored.

FIRST AND THIRD PARAMETERS OF A FOR MAY NOT BE NEGATIVE (35)

Serious.

FOR INDEX IS NOT UNIQUE IN THIS FOR RANGE (CC)

Serious.

FOR MUST BE FOLLOWED BY INDEX AND EQUAL SIGN (5A)

Serious.

FOR STATEMENT HAS INVALID PARAMETER(S) (73)

Serious.

IFEITH DECLARED WITHOUT ANY ORIF’S FOLLOWING (3A)

Serious.

ILLEGAL PLACEMENT OF IF STATEMENT (1D)

Serious.

ILLEGAL REGISTER IN RESERVE OR RELEASE � REST OF CARD IGNORED (E5)

Warning.

ILLEGAL TO LABEL THIS STATEMENT (19)

Serious.

IMPLICITLY CALLED LIBRARY ROUTINE NOT ON LIBRARY TAPE (81)

Serious.

IMPROPER TERMINATION OF A DATA DECLARATION (B4)

11−12 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Serious. ITEM statement must terminate with a $. A $ is assumed.

INCONSISTENT MODE OR SIGN OF A PRESET CONSTANT (AC)

Serious. Initial values assigned to table items must conform to the description of the item.

INDEX IN THIS STATEMENT WAS NOT PREVIOUSLY DEFINED (98)

Serious. An index must be defined in a FOR statement and remains defined only in the range of
the FOR.

INDEX IN THIS TEST STATEMENT WAS NOT PREVIOUSLY DEFINED (93)

Serious. An index must be defined in a FOR statement and remains defined only in the range of
the FOR.

INVALID CHARACTER IN THIS STATEMENT (01)

Serious.

INVALID ELEMENT AT THE START OF AN EXPRESSION (40)

Serious.

INVALID ELEMENT AT THE START OF THE LEFT TERM (49)

Serious.

INVALID ELEMENT FOLLOWS THE WORD ASSIGN (5E)

Serious.

INVALID ELEMENT IN A FUNCTION CALL (58)

Serious.

****** INVALID ELEMENT IN AN EXPRESSION (FD)

Serious.

INVALID ELEMENT IN AN IF STATEMENT (64)

Serious.

INVALID EXPRESSION IN AN IF STATEMENT (62)

Serious.

INVALID FIELD SPECIFIED IN A MODIFIED ITEM (7E)

Serious.

INVALID FORM OF A BIT/BYTE MODIFIER ARGUMENT (48)

Serious.

11−13NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

INVALID FORM OF A CLOSE STATEMENT (0B)

Serious.

INVALID FORM OF A DUMMY ITEM DECLARATION (AF)

Serious. A data declaration of a parameter in the heading of the function or procedure is incorrect.

INVALID FORM OF A DUMMY PARAMETER (63)

Serious. A parameter given in the PROC statement is incorrect.

INVALID FORM OF A FIXED POINT CONSTANT (05)

Serious.

INVALID FORM OF A FLOATING POINT CONSTANT (04)

Serious.

INVALID FORM OF A FOR STATEMENT (5B)

Serious.

INVALID FORM OF A FUNCTION CALL (59)

Serious.

INVALID FORM OF A GOTO STATEMENT (5D)

Serious.

INVALID FORM OF A HEXADECIMAL CONSTANT (02)

Serious.

INVALID FORM OF A PRESET CONSTANT LIST (AB)

Serious. Initial values can be assigned to table items only. They are enclosed in BEGIN−END brackets
and follow the ITEM statement.

INVALID FORM OF A PROC (61)

Serious.

INVALID FORM OF A PROCEDURE CALL (55)

Serious.

INVALID FORM OF A REMQUO STATEMENT (57)

Serious.

11−14 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

INVALID FORM OF A RETURN STATEMENT (0E)

Warning.

INVALID FORM OF A RIGHT TERM (53)

Serious.

INVALID FORM OF A SINGLE ITEM OR PARAMETER ITEM DECLARATION (B0)

Serious.

INVALID FORM OF A STATUS CONSTANT (09)

Serious.

INVALID FORM OF A STOP STATEMENT (21)

Warning.

INVALID FORM OF A STRING DECLARATION (BF)

Major.

INVALID FORM OF A SUBSCRIPT SWITCH DECLARATION (2B)

Serious.

INVALID FORM OF A TABLE DECLARATION (31)

Major.

INVALID FORM OF A TABLE ITEM DECLARATION (BC)

Serious.

INVALID FORM OF A TERM STATEMENT (AD)

Warning.

INVALID FORM OF A TEST STATEMENT (92)

Serious.

INVALID FORM OF AN ALL MODIFIER ARGUMENT (5C)

Serious.

INVALID FORM OF AN ARRAY DECLARATION (99)

Major.

INVALID FORM OF AN ASCII CONSTANT (08)

11−15NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Serious.

INVALID FORM OF AN ASSIGN STATEMENT (5F)

Serious.

INVALID FORM OF AN ASSIGNMENT OR EXCHANGE STATEMENT (4F)

Serious.

INVALID FORM OF AN EBCDIC CONSTANT (07)

Serious.

INVALID FORM OF AN ENT ARGUMENT (46)

Serious.

INVALID FORM OF AN EQUATE STATEMENT (D7)

Serious.

INVALID FORM OF AN IMBEDDED COMMENT (0A)

Serious.

INVALID FORM OF AN INTEGER CONSTANT (06)

Serious.

INVALID FORM OF AN ITEM SWITCH DECLARATION (27)

Serious.

INVALID FORM OF PROGRAM NAME (1B)

Serious. A program name must be a valid symbolic name.

INVALID FORM OF STATEMENT LABEL ON DIRECT OPERATOR (CF)

Serious.

INVALID LABEL IN A TERM STATEMENT (A1)

Warning.

INVALID MEMBER NAME (8C)

Warning. The INCLUDE pseudo-op is ignored.

INVALID NUMBER OF ARGUMENTS IN THE CALL (70)

11−16 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Serious. The number of parameters in a call to a function, procedure, or library defined procedure
must equal the number of arguments in the PROC statement. Also used when null arguments appear
in a call to a routine which may have code generated in line. In this case it may be serious or
warning.

INVALID NUMBER OF INPUT ARGUMENTS IN A FUNCTION CALL (74)

Serious. The number of parameters in a function call must equal the number of input parameters
in the PROC statement identifying the function. Also used when null arguments appear in a call
to a routine which may have code generated in line.

INVALID OUTPUT ARGUMENT IN A PROCEDURE CALL (56)

Serious.

****** INVALID PLACEMENT OF A STATEMENT LABEL (FC)

Serious. Statement labels must precede the statement being labeled. The label of a compound statement
may precede or follow the BEGIN bracket.

INVALID PLACEMENT OF RELATIONAL OR LOGICAL OPERATOR (3E)

Serious.

INVALID REGISTER SCALE FACTOR IN ASSIGN STATEMENT (85)

Serious.

INVALID SCALING FACTOR IN THIS FIXED POINT ITEM DECLARATION (B5)

Warning. Scaling factor must not exceed number of bits in items and absolute maximum is 31.

INVALID SCALING FACTOR OR LENGTH IN A FIXED POINT CONSTANT (B9)

Warning. Maximum for scaling factor and length is 31. Scaling factor must not exceed length.

INVALID STARTING BIT NUMBER IN THIS STRING DECLARATION (D3)

Major.

INVALID TERM IN AN ASSIGN STATEMENT (60)

Serious.

INVALID TERM MODIFIED BY NENT OR NWDSEN (52)

Serious.

INVALID TO EQUATE A TABLE WITH PRESET CONSTANTS (DE)

Serious. If initial values are assigned to a table, the table cannot share storage with any other table.

INVALID TO LABEL A NON−OPERATIVE STATEMENT (1E)

11−17NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Warning. Label ignored.

INVALID USE OF A DECIMAL POINT (03)

Serious. Decimal points can be specified only for fixed-point, floating-point, EBCDIC, or ASCII fields.

INVALID USE OF A STATUS CONSTANT (45)

Serious. Status value constants must not be used in parameter ITEM statements of ARRAY statements.

INVALID USE OF ENT (51)

Serious.

INVALID USE OF EQUAL SIGNS (3D)

Serious.

INVALID USE OF EXPONENTIATION (43)

Serious. JOVIAL form of exponent is (*...*).

INVALID USE OF ‘LOC’ FUNCTION (87)

Serious.

INVALID USE OF NENT OF FIXED LENGTH TABLE (7D)

Serious. The value of NENT is assigned by the compiler for fixed-length tables and cannot be changed
during program execution.

INVALID USE OF NOT (3F)

Serious.

INVALID USE OF NWDSEN (4C)

Serious.

****** INVALID USE OF PARAMETER ITEM (F8)

Serious. The value of parameter items cannot be changed during program execution. Parameter items
must not be used instead of compiler-allocated or programmer-allocated items to describe entries
in tables. Only integer parameter items can be used to provide constant information in data declaration
(e.g., start-word, start-bit).

INVALID USE OF PARAMETERS (41)

Serious. Parentheses must be paired. They are used in arithmetic expressions and IF statements to
indicate precedence. They surround subscripts, objects or modifiers, object of ABS, and exponents.

****** INVALID USE OF RESERVED JOVIAL WORD (FB)

11−18 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Serious. Word ****** is a reserved JOVIAL word and can be used only for its specified purpose.
May also appear as a warning diagnostic.

INVALID USE OF SUBSCRIPTING (42)

Serious.

****** INVALID USE OF TABLE NAME (FA)

Serious.

ITEM NAME IN DUPLICATE TABLE IS NOT UNIQUE WITH SUFFIX APPENDED (96)

Serious.

ITEM NAME IN DUPLICATE TABLE IS TOO LONG WITH APPENDED SUFFIX (95)

Serious. Symbolic names must not exceed six characters. Suffix letter on duplicate table name is
used to distinguish items in duplicate table.

JOVIAL BRACKET MISSING (CE)

Major.

JOVIAL BRACKET NOT PRECEDED BY DIRECT BRACKET (A6)

Serious. Brackets must be paired.

JOVIAL PSEUDO−OP IS INVALID OR CONTAINS ILLEGAL FIELD (D0)

Warning. Applies to a �period-blank" pseudo-op.

LEFT PARENTHESIS MUST FOLLOW ABS (50)

Serious.

LESS THAN TWO NAMES IN THIS EQUATE STATEMENT (D9)

Serious.

LESS THAN 2 STATES IN THIS STATUS TYPE STRING DECLARATION (D5)

Major.

LIBRARY PROGRAM NOT INTRODUCED BY PROC OR DIRECT (9B)

Major.

MAXIMUM NESTING LEVEL EXCEEDED (8B)

Warning. The INCLUDE pseudo-op is ignored.

MAXIMUM NUMBER OF PRESET CONSTANTS EXCEEDED−EXCESS IGNORED (BE)

11−19NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Warning.

MEMBER NOT FOUND (89)

Warning. The INCLUDE pseudo-op is ignored.

MISSING ARITHMETIC OPERATOR (47)

Serious.

MISSING LEFT TERM IN THIS STATEMENT (4A)

Serious.

MISSING OPERAND IN THIS STATEMENT (4D)

Serious.

MISSING PARAMETER IN A DUPLICATE TABLE DECLARATION (8D)

Serious.

MOD IS NOT A VALID SYMBOLIC NAME (25)

Serious. The name of the compool given on the START statement must be a valid symbolic name.

MOD ON START CARD NOT FOUND ON COMPOOL (97)

Serious. No compool was found that matched the symbolic name on the START card image.

MODES OF ITEM AND CONSTANT DO NOT AGREE (79)

Warning. The type (integer, fixed-point, etc.) of a constant must agree with the type of the field
in which it is to be stored. Field type dominates.

MORE PROCEDURE DECLARATIONS IN ONE PROGRAM THAN ALLOWED (14)

Fatal.

N, M, B, OR D OMITTED IN THIS ITEM DECLARATION (C4)

Warning. Item storage was not designated in TABLE statement. D is assumed.

NAME INVALID ON TERM STATEMENT OF A LIBRARY PROCEDURE (20)

Warning.

NESTED PROCEDURE DECLARATIONS ARE ILLEGAL (11)

Major.

NO. OF PRESET CONSTANTS EXCEEDS NO. OF ENTRIES � EXCESS IGNORED (3C)

11−20 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Warning.

NON−INTEGER PARAMETER ITEM INVALIDLY USED IN A DATA DECLARATION (30)

Major. Only integer parameter items can be used instead of integers to describe data (e.g., number
of bits per entry, size of table).

NON−OPERATIVE STATEMENT MAY NOT BE IN THE BODY OF PROC OR CLOSE (DF)

Serious. All data declarations in functions and procedures must be in heading. Closed compound
procedures must not contain data declarations.

NULL ARGUMENTS SHOULD NOT BE USED IN CALL TO THIS PROCEDURE (37)

Warning or Serious.

NUMBER BEADS/WORD IN STRING DECLARATION IS ZERO OR MORE THAN 32 (32)

Major.

NUMBER OF BEADS PER WORD IS TOO GREAT IN THIS STRING DECLARATION (D2)

Serious.

NUMBER OF BITS IN THIS DATA DECLARATION IS OMITTED OR INVALID (B2)

Warning. Size in bits of integer and fixed-point fields must be specified. Range of size is from 1
to 32 bits. Maximum size is assumed.

NUMBER OF BITS SPECIFIED IN THIS DECLARATION IS INCORRECT (C5)

Warning. Size in bits of integer and fixed-point fields must be given. Range is from 1 to 32 bits.
Maximum size is assumed.

NUMBER OF BITS SPECIFIED IN THIS STRING DECLARATION IS INCORRECT (D4)

Major.

NUMBER OF STATUS VALUES IN THIS ITEM DECLARATION IS INCORRECT (B1)

Serious. Number of status values given does not agree with number specified in the programmer
allocated ITEM statement.

NUMBER OF WORDS PER TABLE ENTRY ARE UNEQUAL (84)

Serious.

OPERATIVE STATEMENT INVALID IN THE HEADING OF A PROC (E3)

Serious. A function or procedure heading consists of data declaration only.

ORIF/END MUST BE SEQUENCED AS FALSE EXIT OF IFEITH/ORIF (39)

11−21NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

Major. Either ORIF was found where not expected, or some other statement was found where compiler
expected ORIF or END.

PARAMETER ITEMS MAY NOT BE DECLARED IN A TABLE (C3)

Serious.

POOL SPECIFIED WITHOUT TAPE ID AND/OR MOD FOLLOWING (0F)

Serious. If a compool is requested on the START statement, it must be identified by the compool
tape-ID and specified compool-ID.

PREMATURE EOF. POSSIBLE MACHINE OR COMPILER ERROR (EF)

Fatal.

PRESET CONSTANT INTRODUCED BY BEGIN, BUT NO CONSTANT FOLLOWED (9F)

Warning.

PRESET CONSTANT TOO LONG FOR ITEM (34)

Warning.

PRESET CONSTANTS MUST BE TERMINATED BY AN END (E2)

Warning. Initial values, assigned to table items, must be enclosed in BEGIN−END brackets and follow
the ITEM statement. END bracket is assumed.

PROC DUMMY ITEM INCOMPATIBLE WITH USE OF LABEL OR TABLE NAME (6F)

Serious.

PROC NAME DOES NOT MATCH START CARD NAME IN LIBE COMPILATION (9A)

Major.

PROCEDURE CALL IS WITHIN RANGE OF ITS PROCEDURE DECLARATION (26)

Serious. A procedure cannot call itself.

PROCEDURE DECLARATION � DUMMY PARAMETERS NOT ALL DEFINED (10)

Major. All input and output parameters must be declared in the procedure heading.

PROCEDURE DECLARATION HAS A DUPLICATE DUMMY PARAMETER (13)

Major. Input and output parameters must be unique within the procedure although they may duplicate
names in other regions of the program.

PROCEDURE DECLARATION WITHOUT A BODY BEGIN (D8)

Major. The body of a procedure (operative statements) must be enclosed in BEGIN−END brackets.

11−22 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

PROCEDURE DECLARATION WITHOUT A BODY END (DA)

Major. The body of a procedure (operative statements) must be enclosed in BEGIN−END brackets.

PROGRAM DOES NOT CONTAIN A STOP STATEMENT (E1)

Warning.

PROGRAM ENDED WITH THE TRUE OR FALSE EXIT OF AN IF (D1)

Serious.

RECURSIVE INCLUDED MEMBERS (8A)

Warning. The INCLUDE pseudo-op is ignored.

RESERVE STATEMENT WITHIN DIRECT CODE OR RANGE OF A FOR LOOP (E4)

Warning.

RETURN STATEMENT IS NOT IN THE RANGE OF A PROC OR CLOSE (0D)

Serious. A RETURN is meaningful only within a function, procedure, closed compound procedure,
or library defined procedure.

RIGHT AND LEFT TERM IDENTITY. NO CODE PRODUCED (80)

Warning. In Assignment or Exchange statement, right term and left term are the same. Statement
was ignored.

RIGHT TERM MISSING IN THIS STATEMENT (4E)

Serious.

SCALING FACTORS OF ITEM AND CONSTANT DO NOT AGREE (7A)

Warning. Constant and item description do not agree. Item description dominates.

SIGN DESIGNATION IN THIS ITEM DECLARATION IS NOT S OR U (B3)

Warning. Only S or U can be used; S is assumed.

SIGNS OF ITEM AND CONSTANT DO NOT AGREE (7B)

Warning. Constant sign does not agree with item field.

SIZE OF PROGRAMMER ALLOCATED TABLE ENTRY IS INVALID (8F)

Major.

SIZE OF THIS ARRAY EXCEEDS 16,777,216 BYTES (C7)

Major.

11−23NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

SIZES OF ITEM AND CONSTANT DO NOT AGREE (7C)

Warning. Constant does not fit in item field. Constant is truncated.

START CARD SPECIFIES BOTH CLOSE AND LIBE OPTIONS (1A)

Serious.

START CARD SPECIFIES CLOSE OPTION BUT DOES NOT SPECIFY NAME (1C)

Serious. A closed program is executed only if called from another program. It may be called by name.

START STATEMENT ENCOUNTERED AFTER FIRST STATEMENT PROCESSED (A4)

Serious. START must be the first statement in any JOVIAL program. It must not appear elsewhere
in the program.

STATEMENT HAS A TERM MIXING OR IMPROPERLY USED (4B)

Serious.

STATEMENT HAS MORE THAN ONE LABEL (22)

Warning. Second label ignored.

STATEMENT HAS MORE THAN 2000 CHARACTERS (16)

Serious.

STATEMENT HAS MORE THAN 256 ELEMENTS (17)

Serious.

STATEMENT INVALID IN THE BODY OF A TABLE DECLARATION (A0)

Serious. No operative statements can appear among data declaration statements describing a table
entry.

STATEMENT LABEL IS NOT UNIQUE (1F)

Serious.

STATUS CONSTANT NOT VALID FOR THIS STATUS ITEM (2F)

Serious.

STRING DECLARATION INVALID IN A COMPILER ALLOCATED TABLE (9E)

Serious.

STRING DECLARATION MAY NOT APPEAR OUTSIDE OF A TABLE DECLARATION (A3)

Serious.

11−24 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

****** SUBROUTINE NAME IS NOT UNIQUE (F6)

Serious. Defined procedure name ****** is not unique.

SUBSCRIPT OMITTED ON SUBSCRIPT SWITCH CALL (6B)

Serious.

SWITCH DECLARATION CONTAINS NO VALID TESTS OR BRANCHES (0C)

Serious.

SYNTAX LIST OVERFLOW � STATEMENT HAS MORE THAN 20 LEVELS (B8)

Serious.

TABLE DECLARATION NOT FOLLOWED BY A BEGIN STATEMENT (9D)

Major. ITEM and STRING statements describing entry format must be enclosed in BEGIN−END
brackets.

TABLE ITEM DECLARATION INCONSISTENT WITH N, M, OR B (A8)

Serious. The table item description conflicts with the packing factor given in the table description.

TABLE ITEM LIST INVALID OR HAS MORE THAN 4096 CHARACTERS (C0)

Major.

TERM STATEMENT MUST FOLLOW THE PROC END IN A LIBE PROGRAM (36)

Serious.

TEST STATEMENT IS NOT IN THE RANGE OF A FOR STATEMENT (91)

Serious. TEST is meaningful only in range of a FOR.

THE CALLED PROCEDURE WAS NOT DECLARED (6E)

Serious. Check the spelling of the procedure name. Procedure and calling program must be compiled
together or must be in the library.

THE CALLED SWITCH WAS NOT DECLARED (69)

Serious. Check the spelling of the switch name. SWITCH statement must be in the same region
as the switch call.

THE FUNCTION CALLED WAS DECLARED AS A PROCEDURE (71)

Serious. Ensure that no equal sign appears among parameters in the PROC statement.

THE FUNCTION CALLED WAS NOT DECLARED (72)

Serious. Check the spelling of the function name in the PROC statement. Function must be compiled
with the calling program or must be in the library.

11−25NASP−9288−02H15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

THE ITEM IN THIS SWITCH CALL MAY NOT BE SUBSCRIPTED (6A)

Serious. Subscript specified for single item.

THE LAST OR ONLY STATEMENT IN THE RANGE OF A FOR MAY NOT BE AN IF (C1)

Serious.

THE NUMBER OF CHARACTERS IN THIS ITEM DECLARATION IS INVALID (B6)

Warning. EBCDIC and ASCII items may only be 1 to 8 characters long.

THE PROCEDURE CALLED HAS ARGUMENTS OR IS A FUNCTION (3B)

Serious. The procedure called from a SWITCH has input or output arguments or is defined as a func-
tion.

THE PROCEDURE CALLED WAS DECLARED AS A FUNCTION (6D)

Serious. In procedures, an equal sign must separate input and output parameters in the PROC statement.

THE TRUE EXIT OF AN IF STATEMENT MAY NOT BE A FOR STATEMENT (E0)

Serious.

THERE IS NO TERM STATEMENT IN THIS PROGRAM (8E)

Warning. All JOVIAL programs must end with a TERM statement. Program execution will begin
with the first operative statement.

THIS EQUATE STATEMENT HAS TWO OR MORE COMPOOL NAMES (DB)

Serious.

THIS IS AN END WITHOUT A MATCHING BEGIN (A9)

Major.

THIS LITERAL IS TOO LARGE TO REPRESENT IN ONE MACHINE WORD (BA)

Warning. The constant is larger than the maximum permitted.

THIS PROGRAM HAS NO OPERATIVE STATEMENT (C6)

Major.

THIS STATEMENT CANNOT BE CLASSIFIED (A7)

Serious. Check statement format and spelling.

TOO MANY LOGICAL OPERATORS IN THIS STATEMENT (2D)

Serious.

11−26 NASP−9288−02H 15 August 1995

TABLE 11−1.���JOVIAL DIAGNOSTIC MESSAGES (Continued)

TRANSFER POINT IS NOT A STATEMENT LABEL IN THE SAME REGION (6C)

Serious. May also appear as a warning diagnostic.

TWO ARITHMETIC OPERATORS IN A ROW (44)

Serious.

****** UNDEFINED DATA NAME (FE)

Serious. Name ****** was not declared. May also appear as a warning diagnostic.

UNEQUAL NUMBER OF BEGINS AND ENDS IN THIS PROGRAM (BD)

Major. Brackets must be paired.

UNSIGNED TERM OF MORE THAN 31 BITS APPEARS IN AN EXPRESSION (76)

Warning.

USE OF EXPONENTIATION IS AMBIGUOUS (BB)

Warning.

VALUE IN AN ITEM SWITCH DECLARATION IS NOT UNIQUE (2A)

Serious. Values must not be repeated in the same item SWITCH statement.

VALUE IN AN ITEM SWITCH DECLARATION IS NOT VALID OR IS OMITTED (29)

Serious. Values must agree with the item description.

VARIABLE IN AN ITEM SWITCH DECLARATION IS NOT A VALID NAME (28)

Serious. The item name in the SWITCH statement is not valid. Check spelling.

WORD NUMBER IN THIS DECLARATION INCONSISTENT WITH ENTRY LENGTH (C9)

Warning. In a programmer-allocated TABLE statement, the specified number of words per entry conflicts
with the word number indicated by ITEM statement.

WORD OR BIT NUMBER OMITTED IN THIS ITEM DECLARATION (CB)

Major.

12−1NASP−9288−02H15 August 1995

12.0 JOVIAL STRUCTURED LISTING

In order to make maintenance of structured JOVIAL programs easier, the compiler will, as an option,
produce a structured listing of the JOVIAL source. This relieves the programmer of the responsibility
of assuring that the JOVIAL source is in the correct columns.

To request a structured listing, code the ‘STRUC’ option on the ISPF panel.

Table 12−1 details the use of the print positions on the print lines.

TABLE 12−1.���PRINT LINE GENERAL FORMAT

Print Position Format

1−4 Card Image Number

5 Blank

6−12 Statement Label

13 Blank

14−79 Statement

80−118 Comments

119−132 Column 67−80 of Source Card Image

Exceptions:

1. The following are listed without formatting starting in print position 6.

a. Comments starting in Column 1 or continuations of comments starting in Column 1.

b. Direct Code.

c. The START statement (except that unnecessary blanks are eliminated).

2. Statements preceding the START statement and following the TERM statement are listed without
formatting starting in print position 1.

The following is a list of the rules that the compiler will follow in producing the structured listing.

Rules for Statement Formatting:

1. Unnecessary blanks are eliminated.

2. One statement per line.

3. A statement may be spread over several lines, but input from different statements will never
appear on the same line. Because a statement may be spread over several lines, a ‘logical’ page

12−2 NASP−9288−02H 15 August 1995

may require more than one physical page. To prevent this it is recommended that code which
would be put on a separate line by JOVFORM should be put on a separate statement by the
JOVIAL user (i.e., STATUS values). IF statements should be coded:

IF relational expression 1 OR
���relational expression 2 AND
���relational expression 3 $).

4. Nothing will be indented more than 40 print positions from print position 6.

5. IF, IFEITH, ORIF, FOR, PROC, CLOSE (CLOSE COMPOUND Procedure declaration), BEGIN
(except those preceding tabular item definitions or presets) cause the following statement to
be indented two more print positions.

a. BEGIN, for table definitions and item presets, is idented 1 more than the previous statement
and causes the next statement to be idented 1 more than the begin.

6. END (except an IFEITH series END or an END bracketing tabular items or presets) will be
intended 2 less than the previous statement and the next statement will be indented 2 less
than the END.

a. An IFEITH series END and the following statement will be indented as far as the IFEITH
which started the series.

b. END, bracketing tabular items or presets, will be idented one less than the previous statement
and causes the next statement to be indented one less than the END.

7. Continuations are indented six print positions more than the first line of the statement.

8. If a continuation is forced, the statement is broken off at / + − =,) (*.

9. In logical expressions, AND and OR are placed so as to be the end of a line.

10. Data definition rules. Table 12−2 details the print position assignments for fields on data definition
statements.

a. A field is left-justified in its starting position.

b. If a field is longer than expected, the following fields are spaced one space between fields
until there is enough room to put the field in its proper place.

12.1���COMMENTS

If the comment starts in column 1, the comment and any of its continuations are listed without formatting,
starting in print position 6.

All other comments are placed in print positions 80−118. The double quotes (") always are placed in
print positions 80, 81 and 117, 118. If a comment will not fit, it is continued on the next line, broken
at a blank if possible.

12.2���ERROR MESSAGES

The following error messages may be produced:

END WITHOUT BEGIN

BEGIN WITHOUT END

ORIF WITHOUT IFEITH

‘$’ IN A COMMENT

12−3NASP−9288−02H15 August 1995

TABLE 12−2.���DATA DEFINITION FORMAT

Field Print Position***

TABLE* 14

ITEM (non-tabular) 14

ARRAY* 14

ITEM (tabular) 16

STRING 16

Name 23

Item type 29

Parameter item value 30

No. of Bits or Bytes 31

sign 34

status value** 34

scale 37

start word 39

Start bit 42

Packing factor 45

Skip 47

Bead limit 50

dollar sign ($) 53

*All fields past the name field on TABLE and ARRAY declarations are placed one space between fields

**Each status value is placed on a separate line.

***Add 2 to each print position for data declarations inside procedures.

A−1NASP−9288−02H15 August 1995

Appendix A

JOVIAL OPERATORS AND RESERVED WORDS

JOVIAL OPERATORS

A JOVIAL operator is a word or a symbol that instructs the computer to perform some operation. The
following list gives the categories of JOVIAL operators.

Declaration
Contextual
Modifiers

Relational Arithmetic Sequential Bracket

ITEM EXIT EQ + GOTO START−TERM

TABLE EXTRN NQ − STOP BEGIN−END

STRING LINKABLE LS * RETURN DIRECT−JOVIAL

ARRAY LIBE LQ (*...*) IF (...)

SWITCH REENT GR / FOR �..."

PROC POOL GQ ABS(...) TEST ($...$)

CLOSE REMQUO IFEITH

ORIF

Assignment Logical Modifiers Separation Allocation

= AND ALL $ EQUATE

== OR ENT .

ASSIGN NOT NENT ,

NWDSEN blank

BIT

BYTE

RESERVED WORDS

Reserved words have special meanings in JOVIAL programs and may be used only for their assigned purpose.
They may not be used as symbolic names. The following list gives JOVIAL reserved words.

ABS JOVIAL
ALL

A−2 NASP−9288−02H 15 August 1995

AND LQ
ARRAY LS
ASSIGN

NENT
BEGIN NOT
BIT NQ
BYTE NWDSEN

CLOSE OR
ORIF

DIRECT PROC

ENT RETURN
EQ
EQUATE START

STOP
FOR STRING

SWITCH

GOTO
GQ TABLE
GR TERM
IF TEST
IFEITH
ITEM

CONTEXTUAL MODIFIERS

Contextual Modifiers are words which have special meaning to the compiler, but which are not strictly
reserved. The meaning of these modifiers is determined from the context in which they are found; thus
they may be used as symbolic names as long as it is clear that they will not be used ambiguously by
the compiler. The following list gives JOVIAL Contextual Modifiers and areas where they are used.

EXIT � TEST statement

EXTRN � CLOSE declaration

LINKABL � CLOSE declaration, START Statement

LIBE � START statement

REENT � START statement

POOL � START statement

TERMS IN A JOVIAL STATEMENT

The following list gives JOVIAL terms. Blanks must not be embedded in terms.

labels

constants* (e.g. V(RED), 3C(A B), and X(4A)).

symbolic names

reserved words

*EBCDIC and ASCII constants can contain embedded blanks because the blank is an acceptable character.

A−3NASP−9288−02H15 August 1995

+

−

*

/

=

==

(preceding arithmetic operands and function parameters

) following arithmetic operands and function parameters

($ subscript opener

$) subscript terminator

(* exponentiation opener

*) exponentiation terminator

, separator

$

Although a blank may always be used to separate terms, one is not mandatory except in the following
cases:

1. A blank must follow a fixed-point, integer, or floating-point constant unless the first character
of the next term is a special character other than a period.

2. If the last character of a term and the first character of the following term are alphabetic,
a blank must appear between the terms. For example, a blank must separate a reserved word
from a symbolic name.

B−1NASP−9288−02H15 August 1995

Appendix B

STATEMENT FORMATS

FORMATS OF DATA DECLARATION STATEMENTS

The following alphabetical list gives the name, purpose, and format of each data declaration statement.

ARRAY

Used to describe in array of one or more dimensions.

ARRAY array-name d1 d2 ... dn field-format $

Compiler-Allocated ITEM

Describes single items and items combined to form compiler-allocated tables.

ITEM item-name field-format $

Compiler-Allocated TABLE

Describes table in which compiler allocates storage.

�N
�M

TABLE table-name V �entry-limit� � $
R �D

�B

Duplicating TABLE

Used to define a new table by repeating the description of a previously defined table.

TABLE modified-table-name V entry-limit L $ �
R

EQUATE

Permits two more single items, or table items, or arrays to share the same storage area.

EQUATE symbolic-name = symbolic-name

B−2 NASP−9288−02H 15 August 1995

[=symbolic-name] ... $

Item SWITCH

Gives values of an item and corresponding statement labels to which transfer is to be made if the item
has one of the specified values when the switch is tested.

SWITCH switch-name (item-name) =
(value = statement-label [,value = statement-label]...)
�[,else-statement-label]������$

Parameter ITEM

Assigns symbolic names to constant values.

ITEM item-name constant-value $

Programmer-Allocated ITEM

Describes items that make up entries in programmer-allocated tables.

ITEM item-name field-format start-word

N
M

Start-bit $
D
B

Programmer-Allocated TABLE

Describes tables for which the programmer determines the allocation of storage.

TABLE table-name V entry-limit word-limit $
R

STRING

Repeats specified variable field formats in a programmer-allocated table entry.

STRING string-name field-format start-word

N
M

Start-bit skip bead-limit $
D
B

B−3NASP−9288−02H15 August 1995

Subscript SWITCH

Specifies statement labels to which transfer is to be made as a specified subscript assumes consecutive

values.

SWITCH switch-name = (statement label[,[statement label]]...)

[,else-statement-label] $

FORMATS OF OPERATIVE STATEMENTS

The following alphabetical list gives the name, purpose, and format of each operative statement.

ASSIGN

Used in direct code to refer JOVIAL-defined data.

ASSIGN �R(scale)� = �arithmetic-expression $

left-term = R (scale) ����$

Assignment

Sets an item to a specified value.

left-term = arithmetic expression $

CLOSE

Identifies a closed-compound procedure.

CLOSE closed-compound-procedure-name $

Exchange

Switches the values of two items or two table entries.

item-name == item-name $

ENT (table name) == ENT(table-name) $�

FOR

Indicates that the next statement is to be executed a specified number of times under the control of an

index.

B−4 NASP−9288−02H 15 August 1995

FOR index = start ,step
,step, max $

Function Calls

Part of an operative statement used to call a function

function-name [(input-parameter)
[,[input-parameter]]...)] $

GOTO

Causes an unconditional transfer, tests a switch, or calls a closed program or closed-compound procedure.

statement-label
GOTO switch-name [($subscript$)] � $

closed-program-name [(=left-term)]
closed-compound-procedure-name

IF

Tests an expression for a true or false condition.

simple-condition� $
IF complex-condition

IFEITH/ORIF

Tests a series of alternative conditions for true or false.

IFEITH condition $
simple-or-compound-statement
ORIF condition �$
�simple‘-or‘-compound-statement
�.
�.
�.
�.
�.
�.
ORIF condition $

1
�simple-or-compound-statement
END

PROC

Identifies functions and procedures.

B−5NASP−9288−02H15 August 1995

Option 1.

����PROC function-name (input-parameter [, input-parameter]...) $

Option 2.

����PROC procedure-name [([input-parameter]
[,[input-parameter]]..[=[output-parameter]] [,[output-parameter]]...)] $

Procedure Call

Calls procedures.

procedure-name [([input-parameter]
[,[input-parameter]]..[=[output-parameter]] [,[output-parameter]]...)] $

REMQUO

Performs integer division and provides a quotient and remainder.

REMQUO (dividend,divisor=quotient, remainder) $

RETURN

Causes return from function, procedure, closed-compound procedure, and library routines before the END
bracket of the body is reached.

RETURN $

START

Control statement that specifies type of program, whether or not compool is to be used, whether serious
errors suppress loading, and where the program is to be loaded.

START CLOSE symbolic-name

LIBE
�/�n

REENT �� symbolic-name�
LINKABLE +m

BLKDATA symbolic-name
symbolic name

�[POOL [‘compool-id]]�[ASSEMBLE]
�[load-address] [remarks]

B−6 NASP−9288−02H 15 August 1995

STOP

Causes interruption in program execution, and causes return from a closed program to the calling program.

(return-code)

STOP $

statement-label

TERM

Indicates end of a JOVIAL program and the statement at which execution begins.

TERM [statement-label] $

TEST

Causes transfer from within to the end of a FOR range.

TEST [EXIT] [index] $

C−1NASP−9288−02H15 August 1995

Appendix C

OPERATIVE STATEMENT SEQUENCING

The following list summarizes the sequence in which operative statements are executed.

Statement Sequencing

Assignment Next operative statement.

Exchange Next operative statement.

FOR (index) $ Next operative statement.

FOR (index, increment) $ Next operative statement (range) repeated until there is
a transfer outside the range, then statement transferred
to.

FOR (index, increment, max) $ Next operative statement (range) until maximum of index
is passed, then statement following the range.

Function Call First operative statement of the function. After the function
is executed, return is to the statement containing the func-
tion call.

GOTO statement-label $ Statement whose label is given.

GOTO closed-compound-procedure-name $ First operative statement of closed-compound procedure
specified. After the closed-compound procedure is executed,
return is to the next operative statement following the
call.

GOTO closed-program-name $ First operative statement of closed program specified. After
the closed program is executed, return is to the next opera-
tive statement following the call.

GOTO switch-name $ Switch statement specified. If equality is found, or a default
is specified, control is transferred to the statement whose
label is specified. If equality is not found, return is to
the next operative statement following the call.

IF condition $ If condition is true, next operative statement. If condition
is false, second operative statement.

IFEITH condition $ If condition is true, next operative statement. If condition
is false, first ORIF statement.

C−2 NASP−9288−02H 15 August 1995

Statement Sequencing

ORIF condition $ If condition is true, next operative statement. If condition
is false, next ORIF (if present) or first operative statement
following end of IFEITH/ORIF group.

Procedure call First operative statement of procedure. After the procedure
is executed, return is to the statement immediately following
the call.

REMQUO Next operative statement.

RETURN $ In functions, operative statement containing the call. In
procedures and closed-compound procedures, operative
statement immediately following the call.

STOP $ In closed program, statement following the call in the
calling program. Terminates program unless it is a closed
program.

STOP statement-label $ Statement with specified label when programming is
restarted, at the console.

TEST $ End of range of FOR containing TEST.

TEST index $ End of range of FOR controlled by specified index.

TEST EXIT $ Statement following end of range of FOR containing TEST
EXIT.

TEST EXIT index $ Statement following end of range of FOR controlled by
specified index.

D−1NASP−9288−02H15 August 1995

Appendix D

HEXADECIMAL−DECIMAL CONVERSION TABLE

The tables in this appendix provide for direct conversion of decimal and hexadecimal numbers in the following
ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

For numbers outside the range of these tables, add the following values to figures in the tables:

Hexadecimal Decimal

1000 �4096

2000 �8091

3000 12288

4000 16384

5000 20480

6000 24576

7000 28672

8000 32768

9000 36864

A000 40960

B000 45056

C000 49152

D000 53248

E000 57344

F000 61440

D−2 NASP−9288−02H 15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION

0 1 2 3 4 5 6 7 8 9 A B C D E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015

010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031

020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047

030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079

050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095

060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111

070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143

090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159

0A0 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175

0B0 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

0C0 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207

0D0 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223

0E0 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239

0F0 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271

110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287

120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303

130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335

150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351

160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367

170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399

190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415

1A0 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431

1B0 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1C0 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463

1D0 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479

1E0 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495

1F0 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

D−3NASP−9288−02H15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527

210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543

220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559

230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591

250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607

260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623

270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655

290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671

2A0 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687

2B0 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C0 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719

2D0 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735

2E0 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751

2F0 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783

310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799

320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815

330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847

350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863

360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879

370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911

390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927

3A0 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943

3B0 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C0 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975

3D0 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991

3E0 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007

3F0 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

D−4 NASP−9288−02H 15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

4B0 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

4E0 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

5A0 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

5B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

5D0 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

5E0 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

5F0 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

D−5NASP−9288−02H15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

6A0 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

6B0 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6C0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

6D0 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

6E0 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

6F0 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

7A0 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

7B0 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7C0 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

7D0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

7E0 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

7F0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

D−6 NASP−9288−02H 15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

8B0 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8C0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

8E0 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

8F0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

D−7NASP−9288−02H15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

A00 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

AA0 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

AB0 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

AC0 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

AD0 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

AE0 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

AF0 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

B00 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959

B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

BA0 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

BB0 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BC0 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

BD0 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

BE0 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

BF0 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

D−8 NASP−9288−02H 15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

CF0 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

D00 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

DA0 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

DB0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DC0 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

DD0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

DE0 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

DF0 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

D−9NASP−9288−02H15 August 1995

TABLE D−1.���HEXADECIMAL−DECIMAL CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

E00 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

EA0 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

EB0 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

EC0 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

ED0 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

EE0 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

EF0 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

F00 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999

FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

FD0 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

FF0 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

E−1NASP−9288−02H15 August 1995

Appendix E

DELETED

F−1NASP−9288−02H15 August 1995

Appendix F

LISTING OF JOVIAL SOURCE PROGRAM

Line No. Statement

0001 START MEAN �MAIN PROGRAM MEAN"
0002 TABLE SEARCH R 10 1$ �TABLE SEARCH HAS TWO ITEMS"
0003 �BEGIN
0004 ��ITEM ARG I 16 U 0 0 D $
0005 �BEGIN
0006 ��2 0 10 9 80 60 90 44 55 20 �INITIAL VALUES"
0007 �END
0008 ��ITEM FOUND I 16 U 0 16 D$
0009 �END
0010 TABLE COUNT R 100 1 $ �TABLE COUNT HAS TWO ITEMS"
0011 �BEGIN
0012 ��ITEM ADD I 16 U 0 16 D$
0013 BEGIN 1 END
0014 ��ITEM SQR I 16 U 0 0 D$
0015 �END
0016 ITEM TOT I 32 S$ �SINGLE ITEMS"
0017 ITEM DEV I 32 S$
0018 ITEM AA I 32 S $
0019 ITEM BB I 32 U$
0020 ITEM CC I 32 U$
0021 ITEM DD I 32 U$
0022 ����A01. TOT=0$ �FIRST OPERATIVE STATEMENT"
0023 DEV=0$
0024 FOR A=1,1,NENT(COUNT)−1$ �FOR STATEMENT"
0025 ��ADD(A)=ADD($A−1$) +1$
0026 FOR A=ALL(COUNT)$ �EQUIVALENT TO CARD 0024"
0027 �TOT=ADD(A)+TOT$
0028 TOT=TOT/NENT(COUNT)$
0029 FOR A=ALL(COUNT)$
0030 BEGIN �BEGIN RANGE OF FOR"
0031 �AA=TOT−ADD(A)$
0032 �AA=AA(*2*)$
0033 �SQR(A)=AA$
0034 �DEV=DEV+AA$
0035 �END �END RANGE OF FOR"
0036 �FOR A=0,1,NENT(SEARCH)−1$
0037 �BEGIN �BEGIN FOR RANGE FOR A"
0038 IF ARG(A) LS ADD(0) OR ARG(A) �COMPLEX IF"
0039 �GR ADD($NENT(COUNT)−1$)$
0040 �BEGIN �BEGIN TRUE EXIT"
0041 �FOUND(A)=0$
0042 �TEST A$ �TO FOR END FOR A"
0043 �END

F−2 NASP−9288−02H 15 August 1995

Line No. Statement

0044 �AA=NENT(COUNT)−1$
0045 �DD=0$
0046 �CC=AA/2$
0047 �BB=CC$
0048 �FOR B = 0,1,6$ �NESTED FOR"
0049 �BEGIN
0050 �IF ARG(A) EQ ADD(BB)$
0051 �BEGIN �BEGIN TRUE EXIT"
0052 �FOUND(A)=ADD(BB)$
0053 �TEST A$
0054 �END �END TRUE EXIT"
0055 �IF ARG(A) GR ADD(BB)$
0056 �BEGIN �BEGIN TRUE EXIT"
0057 �CC=BB$
0058 �����A02. �BB=(AA−CC)/2+CC$
0059 �DD=CC$
0060 �TEST B$ �TO FOR END FOR B"
0061 �END �END TRUE EXIT"
0062 �AA=BB$
0063 �CC=DD$
0064 �TOTO A02$
0065 �END @@B@@ �END RANGE CONTROLLED BY B"
0066 �END @@A@@ �END RANGE CONTROLLED BY A"
0067 ��FOR A=0,1,NENT(SEARCH)−1$
0068 ��BEGIN
0069 IF ARG(A) NQ FOUND (A)$
0070 ���GOTO ANO$
0071 ��END
0072 �IF TOT NQ 50 $
0073 ��BEGIN
0074 �����ANO. CORE(SEARCH,10,5H(ZILCH),1)$ �LIBRARY ROUTINE"
0075 GOTO OUT$
0076 ��END
0077 �CORE(SEARCH,10,6H(A OKAY),1)$ �LIBRARY ROUTINE"

F−3NASP−9288−02H15 August 1995

Line No. Statement

0078 �����OUT.AA=DD$
0079 STOP$
0080 TERM$

A OKAY

00C3E8 00020002
00C3EC 00000000
00C3F0 000A000A
00C3F4 00090009
00C3F8 00500050
00C3FC 003C003C
00C400 005A005A
00C404 002C002C
00C408 00370037
00C40C 00140014

END OF EXECUTION

END OF JOB

ELAPSED TIME 00/00/00

G−1NASP−9288−02H15 August 1995

Appendix G

JOVIAL COMPILER LIMITS

JOVIAL COMPILER LIMITS

TABLE G−1.���JOVIAL COMPILER LIMITS

Variable Limit

Maximum number of simple EQUATE statements allowed on one table 140

Maximum number of simple equates for tables, arrays, and single items 200

Maximum number of status constants (including those from compool) 6000

Maximum number of parameter items (including compool) 1600

Maximum number of unique FOR indexes 250

Maximum number of statement and switch labels 6800

Maximum number of item switches 210

Maximum number of data names and unique indexes (including compool) 17200

Maximum number of strings (including compool) or equivalent arrays* 1400

*Number given is based on strings, which occupy 4 words/STRING, Equivalent in arrays can be computed

using (D+1) words/ARRAY, where D=number of dimensions

TABLE G−2.���JOVIAL COMPILER LIMITS (STORAGE−INDEPENDENT)

Variables Limit

Maximum number of levels in 1 statement 20

Maximum number of preset constants 2,101

G−2 NASP−9288−02H 15 August 1995

TABLE G−2.���JOVIAL COMPILER LIMITS (STORAGE−INDEPENDENT) (CONTINUED)

Variables Limit

Maximum number of parenthesized expressions in an IF statement 38

Maximum number of bytes allowed in an array (product of all the dimen-
sions)

16,777,216

JOVIAL Compiler Procedure Prefix Limits

There are two factors limiting the number of procedure or function declarations allowed in a compilation.
One is the storage available at compilation time; the other is the availability of prefixes to be at compilation
time; the other is the availability of prefixes to be assigned. The limit is based on the number of routines
on the Library (whether referenced or not) plus the number of internal PROC statements. The actual
limit is always the lesser of the prefix limit (formulas G1 and G2) and the storage limit (Table G−3).
Table G−3 gives estimates based on average number of arguments, as well as actual bytes of storage
available. Each procedure (internal or library) requires 16 bytes plus 19 bytes per argument, while each
function requires 35 bytes plus 19 bytes per explicit argument (the 35 bytes include the implicit output
argument for the function name). Studies have shown an average of 3.1 arguments per routine on a library
tape.

2P + L � 648 (G1)
and �P � 107 (G2)

where:

P is number of PROC statements declared in program, and L is number of routines on the Library
dataset (whether referenced or not).

TABLE G−3.���JOVIAL COMPILER PROCEDURE/FUNCTION LIMITS

Limit

Available Storage (bytes) 49800

Maximum number of procedure or function declarations (inc. Library)
assuming 3 arguments per procedure

694

Maximum assuming 6 arguments per procedure 383

G−3NASP−9288−02H15 August 1995

MVS COMPILER LIMITS

Under MVS the compiler requires a minimum region of 250K in order to operate. This assumes a small
to moderate sized program and a small compool (or no compool). With a large compool (NAS compool
with 6200 data names) a region of at least 350K is required; programs with much internal data and many
segments referenced will need more.

Compool generation (CMPGEN option) will run in the minimum region for small compools. A 6200-data-name
NAS compool will require 450K for generation.

